The evaluation of bone marrow morphology by experienced hematopathologists is essential in the diagnosis of acute myeloid leukemia (AML); however, it suffers from a lack of standardization and inter-observer variability. Deep learning (DL) can proces...
We report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological p...
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death in the world owing to limitations in its prognosis. The current prognosis approaches include radiological examination and detection of serum biomarkers, however, ...
International journal of molecular sciences
Aug 22, 2021
Identifying secretory proteins from blood, saliva or other body fluids has become an effective method of diagnosing diseases. Existing secretory protein prediction methods are mainly based on conventional machine learning algorithms and are highly de...
Ovarian cancer is associated with poor prognosis. Platinum resistance contributes significantly to the high rate of tumour recurrence. We aimed to identify a set of molecular markers for predicting platinum sensitivity. A signature predicting cisplat...
Traditional methods to understand leukemia stem cell (LSC)'s biological characteristics include constructing LSC-like cells and mouse models by transgenic or knock-in methods. However, there are some potential pitfalls in using this method, such as r...
Individualized patient profiling is instrumental for personalized management in hepatocellular carcinoma (HCC). This study built a model based on bidirectional deep neural networks (BiDNNs), an unsupervised machine-learning approach, to integrate mu...
BACKGROUND: A plethora of prognostic biomarkers for esophageal squamous cell carcinoma (ESCC) that have hitherto been reported are challenged with low reproducibility due to high molecular heterogeneity of ESCC. The purpose of this study was to ident...
Computational models for drug sensitivity prediction have the potential to significantly improve personalized cancer medicine. Drug sensitivity assays, combined with profiling of cancer cell lines and drugs become increasingly available for training ...
BACKGROUND: This study aimed to assess the utility of deep learning analysis using pretreatment FDG-PET images to predict local treatment outcome in oropharyngeal squamous cell carcinoma (OPSCC) patients.