AI Medical Compendium Topic:
Biomarkers, Tumor

Clear Filters Showing 571 to 580 of 985 articles

Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears.

Leukemia
The evaluation of bone marrow morphology by experienced hematopathologists is essential in the diagnosis of acute myeloid leukemia (AML); however, it suffers from a lack of standardization and inter-observer variability. Deep learning (DL) can proces...

Domain Adaptation-Based Deep Learning for Automated Tumor Cell (TC) Scoring and Survival Analysis on PD-L1 Stained Tissue Images.

IEEE transactions on medical imaging
We report the ability of two deep learning-based decision systems to stratify non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitor therapy into two distinct survival groups. Both systems analyze functional and morphological p...

Identifying novel transcript biomarkers for hepatocellular carcinoma (HCC) using RNA-Seq datasets and machine learning.

BMC cancer
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death in the world owing to limitations in its prognosis. The current prognosis approaches include radiological examination and detection of serum biomarkers, however, ...

SecProCT: In Silico Prediction of Human Secretory Proteins Based on Capsule Network and Transformer.

International journal of molecular sciences
Identifying secretory proteins from blood, saliva or other body fluids has become an effective method of diagnosing diseases. Existing secretory protein prediction methods are mainly based on conventional machine learning algorithms and are highly de...

A machine learning approach to identify predictive molecular markers for cisplatin chemosensitivity following surgical resection in ovarian cancer.

Scientific reports
Ovarian cancer is associated with poor prognosis. Platinum resistance contributes significantly to the high rate of tumour recurrence. We aimed to identify a set of molecular markers for predicting platinum sensitivity. A signature predicting cisplat...

Identification of biomarkers for acute leukemia via machine learning-based stemness index.

Gene
Traditional methods to understand leukemia stem cell (LSC)'s biological characteristics include constructing LSC-like cells and mouse models by transgenic or knock-in methods. However, there are some potential pitfalls in using this method, such as r...

Using a machine learning approach to identify key prognostic molecules for esophageal squamous cell carcinoma.

BMC cancer
BACKGROUND: A plethora of prognostic biomarkers for esophageal squamous cell carcinoma (ESCC) that have hitherto been reported are challenged with low reproducibility due to high molecular heterogeneity of ESCC. The purpose of this study was to ident...

Interpretable deep recommender system model for prediction of kinase inhibitor efficacy across cancer cell lines.

Scientific reports
Computational models for drug sensitivity prediction have the potential to significantly improve personalized cancer medicine. Drug sensitivity assays, combined with profiling of cancer cell lines and drugs become increasingly available for training ...