AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Chemotherapy, Adjuvant

Showing 51 to 60 of 77 articles

Clear Filters

Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study.

The Lancet. Digital health
BACKGROUND: The tumour stroma microenvironment plays an important part in disease progression and its composition can influence treatment response and outcomes. Histological evaluation of tumour stroma is limited by access to tissue, spatial heteroge...

Multi-input deep learning architecture for predicting breast tumor response to chemotherapy using quantitative MR images.

International journal of computer assisted radiology and surgery
PURPOSE: Neoadjuvant chemotherapy (NAC) aims to minimize the tumor size before surgery. Predicting response to NAC could reduce toxicity and delays to effective intervention. Computational analysis of dynamic contrast-enhanced magnetic resonance imag...

Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy.

Breast (Edinburgh, Scotland)
In patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy (NAC), some patients achieve a complete pathologic response (pCR), some achieve a partial response, and some do not respond at all or even progress. Accurate predicti...

Robust identification of molecular phenotypes using semi-supervised learning.

BMC bioinformatics
BACKGROUND: Modern molecular profiling techniques are yielding vast amounts of data from patient samples that could be utilized with machine learning methods to provide important biological insights and improvements in patient outcomes. Unsupervised ...

Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with glioblastoma multiforme.

Cancer medicine
BACKGROUND: For Glioblastoma (GBM), various prognostic nomograms have been proposed. This study aims to evaluate machine learning models to predict patients' overall survival (OS) and progression-free survival (PFS) on the basis of clinical, patholog...