AIMC Topic: Diabetes Mellitus, Type 2

Clear Filters Showing 41 to 50 of 401 articles

Predicting cardiovascular outcomes in Chinese patients with type 2 diabetes by combining risk factor trajectories and machine learning algorithm: a cohort study.

Cardiovascular diabetology
BACKGROUND: Cardiovascular complications are major concerns for Chinese patients with type 2 diabetes. Accurately predicting these risks remains challenging due to limitations in traditional risk models. We aimed to develop a dynamic prediction model...

Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI).

BMJ open
INTRODUCTION: Artificial Intelligence Ready and Equitable for Diabetes Insights (AI-READI) is a data collection project on type 2 diabetes mellitus (T2DM) to facilitate the widespread use of artificial intelligence and machine learning (AI/ML) approa...

GARNN: An interpretable graph attentive recurrent neural network for predicting blood glucose levels via multivariate time series.

Neural networks : the official journal of the International Neural Network Society
Accurate prediction of future blood glucose (BG) levels can effectively improve BG management for people living with type 1 or 2 diabetes, thereby reducing complications and improving quality of life. The state of the art of BG prediction has been ac...

REMED-T2D: A robust ensemble learning model for early detection of type 2 diabetes using healthcare dataset.

Computers in biology and medicine
Early diagnosis and timely treatment of diabetes are critical for effective disease management and the prevention of complications. Undiagnosed diabetes can lead to an increased risk of several health issues. Although numerous machine learning (ML) m...

A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions.

Nature communications
Cells are regulated at multiple levels, from regulations of individual genes to interactions across multiple genes. Some recent neural network models can connect molecular changes to cellular phenotypes, but their design lacks modeling of regulatory ...

Using a robust model to detect the association between anthropometric factors and T2DM: machine learning approaches.

BMC medical informatics and decision making
BACKGROUND: The aim of this study was to evaluate the potential models to determine the most important anthropometric factors associated with type 2 diabetes mellitus (T2DM).

Deciphering the role of metal ion transport-related genes in T2D pathogenesis and immune cell infiltration via scRNA-seq and machine learning.

Frontiers in immunology
INTRODUCTION: Type 2 diabetes (T2D) is a complex metabolic disorder with significant global health implications. Understanding the molecular mechanisms underlying T2D is crucial for developing effective therapeutic strategies. This study employs sing...

Use of Machine Learning to Predict Individual Postprandial Glycemic Responses to Food Among Individuals With Type 2 Diabetes in India: Protocol for a Prospective Cohort Study.

JMIR research protocols
BACKGROUND: Type 2 diabetes (T2D) is a leading cause of premature morbidity and mortality globally and affects more than 100 million people in the world's most populous country, India. Nutrition is a critical and evidence-based component of effective...

Deep learning based prediction of depression and anxiety in patients with type 2 diabetes mellitus using regional electronic health records.

International journal of medical informatics
BACKGROUND: Depression and anxiety are prevalent mental health conditions among individuals with type 2 diabetes mellitus (T2DM), who exhibit unique vulnerabilities and etiologies. However, existing approaches fail to fully utilize regional heterogen...

Machine learning-driven Raman spectroscopy: A novel approach to lipid profiling in diabetic kidney disease.

Nanomedicine : nanotechnology, biology, and medicine
Diabetes mellitus is a chronic metabolic disease that increasingly affects people every year. It is known that with its progression and poor management, metabolic changes can lead to organ dysfunctions, including kidneys. The study aimed to combine R...