IEEE journal of biomedical and health informatics
Jan 7, 2025
Predicting the progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is critical for early intervention. Towards this end, various deep learning models have been applied in this domain, typically relying on structural magnetic ...
OBJECTIVES: To facilitate the stratification of patients with osteoarthritis (OA) for new treatment development and clinical trial recruitment, we created an automated machine learning (autoML) tool predicting the rapid progression of knee OA over a ...
As an alternative to assessments performed by human experts, artificial intelligence (AI) is currently being used for screening fundus images and monitoring diabetic retinopathy (DR). Although AI models can provide quasi-clinician diagnoses, they rar...
BACKGROUND: To diagnose Alzheimer disease (AD), individuals are classified according to the severity of their cognitive impairment. There are currently no specific causes or conditions for this disease.
BACKGROUND: Definitive chemoradiation is the primary treatment for locally advanced head and neck carcinoma (LAHNSCC). Optimising outcome predictions requires validated biomarkers, since TNM8 and HPV could have limitations. Radiomics may enhance risk...
Alzheimer's disease (AD), the most common neurodegenerative disorder world-wide, presents sex-specific differences in its manifestation and progression, necessitating personalized diagnostic approaches. Current procedures are often costly and invasiv...
BACKGROUND: Chronic Kidney Disease (CKD) is a common severe complication after radical nephrectomy in patients with renal cancer. The timely and accurate prediction of the long-term progression of renal function post-surgery is crucial for early inte...
INTRODUCTION: Osteosarcoma (OS) is a malignancy of the bone that mainly afflicts younger individuals. Despite existing treatment approaches, patients with metastatic or recurrent disease generally face poor prognoses. A greater understanding of the t...
Pre-training strategies based on self-supervised learning (SSL) have demonstrated success as pretext tasks for downstream tasks in computer vision. However, while SSL methods are often domain-agnostic, their direct application to medical imaging is c...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.