AIMC Topic: Esophageal Squamous Cell Carcinoma

Clear Filters Showing 21 to 30 of 71 articles

Comparison of machine learning methods for Predicting 3-Year survival in elderly esophageal squamous cancer patients based on oxidative stress.

BMC cancer
BACKGROUND: Oxidative stress process plays a key role in aging and cancer; however, currently, there is paucity of machine-learning model studies investigating the relationship between oxidative stress and prognosis of elderly patients with esophagea...

A F-FDG PET/CT-based deep learning-radiomics-clinical model for prediction of cervical lymph node metastasis in esophageal squamous cell carcinoma.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: To develop an artificial intelligence (AI)-based model using Radiomics, deep learning (DL) features extracted from F-fluorodeoxyglucose (F-FDG) Positron emission tomography/Computed Tomography (PET/CT) images of tumor and cervical lymph n...

Integrated analysis of gene expressions and targeted mirnas for explaining crosstalk between oral and esophageal squamous cell carcinomas through an interpretable machine learning approach.

Medical & biological engineering & computing
This study explores the bidirectional relation of esophageal squamous cell carcinoma (ESCC) and oral squamous cell carcinoma (OSCC), examining shared risk factors and underlying molecular mechanisms. By employing random forest (RF) classifier, enhanc...

Randomized controlled trial of an artificial intelligence diagnostic system for the detection of esophageal squamous cell carcinoma in clinical practice.

Endoscopy
BACKGROUND: Artificial intelligence (AI) has made remarkable progress in image recognition using deep learning systems. It has been used to detect esophageal squamous cell carcinoma (ESCC); however, none of the previous reports were investigations in...

Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms.

Digestion
BACKGROUND: Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestina...

Metabolism score and machine learning models for the prediction of esophageal squamous cell carcinoma progression.

Cancer science
The incomplete prediction of prognosis in esophageal squamous cell carcinoma (ESCC) patients is attributed to various therapeutic interventions and complex prognostic factors. Consequently, there is a pressing demand for enhanced predictive biomarker...

ESCCPred: a machine learning model for diagnostic prediction of early esophageal squamous cell carcinoma using autoantibody profiles.

British journal of cancer
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly cancer with no clinically ideal biomarkers for early diagnosis. The objective of this study was to develop and validate a user-friendly diagnostic tool for early ESCC detection.