AIMC Topic: Gene Expression Profiling

Clear Filters Showing 281 to 290 of 1306 articles

Integrating bioinformatics and machine learning to uncover lncRNA LINC00269 as a key regulator in Parkinson's disease via pyroptosis pathways.

European journal of medical research
BACKGROUND: Pyroptosis, a specific type of programmed cell death, which has become a significant factor to Parkinson's disease (PD). Concurrently, long non-coding RNAs (lncRNAs) have garnered attention for their regulatory roles in neurodegenerative ...

SyntheVAEiser: augmenting traditional machine learning methods with VAE-based gene expression sample generation for improved cancer subtype predictions.

Genome biology
The accuracy of machine learning methods is often limited by the amount of training data that is available. We proposed to improve machine learning training regimes by augmenting datasets with synthetically generated samples. We present a method for ...

Developing the new diagnostic model by integrating bioinformatics and machine learning for osteoarthritis.

Journal of orthopaedic surgery and research
BACKGROUND: Osteoarthritis (OA) is a common cause of disability among the elderly, profoundly affecting quality of life. This study aims to leverage bioinformatics and machine learning to develop an artificial neural network (ANN) model for diagnosin...

Deep profiling of gene expression across 18 human cancers.

Nature biomedical engineering
Clinical and biological information in large datasets of gene expression across cancers could be tapped with unsupervised deep learning. However, difficulties associated with biological interpretability and methodological robustness have made this im...

Identification and validation of the nicotine metabolism-related signature of bladder cancer by bioinformatics and machine learning.

Frontiers in immunology
BACKGROUND: Several studies indicate that smoking is one of the major risk factors for bladder cancer. Nicotine and its metabolites, the main components of tobacco, have been found to be strongly linked to the occurrence and progression of bladder ca...

Potential shared mechanisms in atopic dermatitis and type 2 diabetes identified via transcriptomic and machine learning approaches.

Scientific reports
Although atopic dermatitis (AD) and type 2 diabetes mellitus (T2DM) may appear clinically and pathophysiologically unrelated, AD is a common skin disease characterized by chronic inflammation and skin barrier dysfunction, whereas T2DM is a metabolic ...

Subspace learning using low-rank latent representation learning and perturbation theorem: Unsupervised gene selection.

Computers in biology and medicine
In recent years, gene expression data analysis has gained growing significance in the fields of machine learning and computational biology. Typically, microarray gene datasets exhibit a scenario where the number of features exceeds the number of samp...

Fuzzy-Based Identification of Transition Cells to Infer Cell Trajectory for Single-Cell Transcriptomics.

Journal of computational biology : a journal of computational molecular cell biology
With the continuous evolution of single-cell RNA sequencing technology, it has become feasible to reconstruct cell development processes using computational methods. Trajectory inference is a crucial downstream analytical task that provides valuable ...

Identification and verification of the optimal feature genes of ferroptosis in thyroid-associated orbitopathy.

Frontiers in immunology
BACKGROUND: Thyroid-associated orbitopathy (TAO) is an autoimmune inflammatory disorder of the orbital adipose tissue, primarily causing oxidative stress injury and tissue remodeling in the orbital connective tissue. Ferroptosis is a form of programm...

The significance of long chain non-coding RNA signature genes in the diagnosis and management of sepsis patients, and the development of a prediction model.

Frontiers in immunology
BACKGROUND: Sepsis is a life-threatening organ dysfunction condition produced by dysregulation of the host response to infection. It is now characterized by a high clinical morbidity and mortality rate, endangering patients' lives and health. The pur...