AIMC Topic: Mycobacterium tuberculosis

Clear Filters Showing 41 to 50 of 95 articles

Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework.

European journal of nuclear medicine and molecular imaging
PURPOSE: To develop and evaluate the effectiveness of a deep learning framework (3D-ResNet) based on CT images to distinguish nontuberculous mycobacterium lung disease (NTM-LD) from Mycobacterium tuberculosis lung disease (MTB-LD).

Automated detection of Mycobacterium tuberculosis using transfer learning.

Journal of infection in developing countries
INTRODUCTION: Quantitative analysis of Mycobacterium tuberculosis using microscope is very critical for diagnosing tuberculosis diseases. Microbiologist encounter several challenges which can lead to misdiagnosis. However, there are 3 main challenges...

Development and performance of CUHAS-ROBUST application for pulmonary rifampicin-resistance tuberculosis screening in Indonesia.

PloS one
BACKGROUND AND OBJECTIVES: Diagnosis of Pulmonary Rifampicin Resistant Tuberculosis (RR-TB) with the Drug-Susceptibility Test (DST) is costly and time-consuming. Furthermore, GeneXpert for rapid diagnosis is not widely available in Indonesia. This st...

A new resource on artificial intelligence powered computer automated detection software products for tuberculosis programmes and implementers.

Tuberculosis (Edinburgh, Scotland)
Recently, the number of artificial intelligence powered computer-aided detection (CAD) products that detect tuberculosis (TB)-related abnormalities from chest X-rays (CXR) available on the market has increased. Although CXR is a relatively effective ...

Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches.

Scientific reports
Rifampicin resistance is a major therapeutic challenge, particularly in tuberculosis, leprosy, P. aeruginosa and S. aureus infections, where it develops via missense mutations in gene rpoB. Previously we have highlighted that these mutations reduce p...

Machine-assisted interpretation of auramine stains substantially increases through-put and sensitivity of microscopic tuberculosis diagnosis.

Tuberculosis (Edinburgh, Scotland)
Of all bacterial infectious diseases, infection by Mycobacterium tuberculosis poses one of the highest morbidity and mortality burdens on humans throughout the world. Due to its speed and cost-efficiency, manual microscopy of auramine-stained sputum ...

A machine learning-based framework for Predicting Treatment Failure in tuberculosis: A case study of six countries.

Tuberculosis (Edinburgh, Scotland)
Tuberculosis is ranked as the 2nd deadliest disease in the world and is responsible for ten million deaths in 2017. Treatment failure is one of a main reason behind these deaths. Reasons of treatment failure are still unknown and the death rate due t...