AIMC Topic: Mycobacterium tuberculosis

Clear Filters Showing 41 to 50 of 99 articles

Accurate and rapid prediction of tuberculosis drug resistance from genome sequence data using traditional machine learning algorithms and CNN.

Scientific reports
Effective and timely antibiotic treatment depends on accurate and rapid in silico antimicrobial-resistant (AMR) predictions. Existing statistical rule-based Mycobacterium tuberculosis (MTB) drug resistance prediction methods using bacterial genomic s...

CXCL1: A new diagnostic biomarker for human tuberculosis discovered using Diversity Outbred mice.

PLoS pathogens
More humans have died of tuberculosis (TB) than any other infectious disease and millions still die each year. Experts advocate for blood-based, serum protein biomarkers to help diagnose TB, which afflicts millions of people in high-burden countries....

Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework.

European journal of nuclear medicine and molecular imaging
PURPOSE: To develop and evaluate the effectiveness of a deep learning framework (3D-ResNet) based on CT images to distinguish nontuberculous mycobacterium lung disease (NTM-LD) from Mycobacterium tuberculosis lung disease (MTB-LD).

Automated detection of Mycobacterium tuberculosis using transfer learning.

Journal of infection in developing countries
INTRODUCTION: Quantitative analysis of Mycobacterium tuberculosis using microscope is very critical for diagnosing tuberculosis diseases. Microbiologist encounter several challenges which can lead to misdiagnosis. However, there are 3 main challenges...

Development and performance of CUHAS-ROBUST application for pulmonary rifampicin-resistance tuberculosis screening in Indonesia.

PloS one
BACKGROUND AND OBJECTIVES: Diagnosis of Pulmonary Rifampicin Resistant Tuberculosis (RR-TB) with the Drug-Susceptibility Test (DST) is costly and time-consuming. Furthermore, GeneXpert for rapid diagnosis is not widely available in Indonesia. This st...

A new resource on artificial intelligence powered computer automated detection software products for tuberculosis programmes and implementers.

Tuberculosis (Edinburgh, Scotland)
Recently, the number of artificial intelligence powered computer-aided detection (CAD) products that detect tuberculosis (TB)-related abnormalities from chest X-rays (CXR) available on the market has increased. Although CXR is a relatively effective ...

Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches.

Scientific reports
Rifampicin resistance is a major therapeutic challenge, particularly in tuberculosis, leprosy, P. aeruginosa and S. aureus infections, where it develops via missense mutations in gene rpoB. Previously we have highlighted that these mutations reduce p...

Machine-assisted interpretation of auramine stains substantially increases through-put and sensitivity of microscopic tuberculosis diagnosis.

Tuberculosis (Edinburgh, Scotland)
Of all bacterial infectious diseases, infection by Mycobacterium tuberculosis poses one of the highest morbidity and mortality burdens on humans throughout the world. Due to its speed and cost-efficiency, manual microscopy of auramine-stained sputum ...