AIMC Topic: Neoplasm Staging

Clear Filters Showing 201 to 210 of 529 articles

Accurate diagnosis and prognosis prediction of gastric cancer using deep learning on digital pathological images: A retrospective multicentre study.

EBioMedicine
BACKGROUND: To reduce the high incidence and mortality of gastric cancer (GC), we aimed to develop deep learning-based models to assist in predicting the diagnosis and overall survival (OS) of GC patients using pathological images.

Deep learning-based virtual cytokeratin staining of gastric carcinomas to measure tumor-stroma ratio.

Scientific reports
The tumor-stroma ratio (TSR) determined by pathologists is subject to intra- and inter-observer variability. We aimed to develop a computational quantification method of TSR using deep learning-based virtual cytokeratin staining algorithms. Patients ...

An [18F]FDG-PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients.

European journal of nuclear medicine and molecular imaging
PURPOSE: The identification of pathological mediastinal lymph nodes is an important step in the staging of lung cancer, with the presence of metastases significantly affecting survival rates. Nodes are currently identified by a physician, but this pr...

Machine Learning-Based Radiomics Signatures for EGFR and KRAS Mutations Prediction in Non-Small-Cell Lung Cancer.

International journal of molecular sciences
Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machin...

The use of a next-generation sequencing-derived machine-learning risk-prediction model (OncoCast-MPM) for malignant pleural mesothelioma: a retrospective study.

The Lancet. Digital health
BACKGROUND: Current risk stratification for patients with malignant pleural mesothelioma based on disease stage and histology is inadequate. For some individuals with early-stage epithelioid tumours, a good prognosis by current guidelines can progres...

The impact of site-specific digital histology signatures on deep learning model accuracy and bias.

Nature communications
The Cancer Genome Atlas (TCGA) is one of the largest biorepositories of digital histology. Deep learning (DL) models have been trained on TCGA to predict numerous features directly from histology, including survival, gene expression patterns, and dri...

Artificial intelligence-based radiomics models in endometrial cancer: A systematic review.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
BACKGROUND: Radiological preoperative assessment of endometrial cancer (EC) is in some cases not precise enough and its performances improvement could lead to a clinical benefit. Radiomics is a recent field of application of artificial intelligence (...