AIMC Topic: Nomograms

Clear Filters Showing 121 to 130 of 374 articles

Machine-learning based prediction model for acute kidney injury induced by multiple wasp stings.

Toxicon : official journal of the International Society on Toxinology
Acute kidney injury (AKI) following multiple wasp stings is a severe complication with potentially poor outcomes. Despite extensive research on AKI's risk factors, predictive models for wasp sting-related AKI are limited. This study aims to develop a...

Explainable machine learning model for predicting paratracheal lymph node metastasis in cN0 papillary thyroid cancer.

Scientific reports
Prophylactic dissection of paratracheal lymph nodes in clinically lymph node-negative (cN0) papillary thyroid carcinoma (PTC) remains controversial. This study aims to integrate preoperative and intraoperative variables to compare traditional nomogra...

Novel prognostic signature for hepatocellular carcinoma using a comprehensive machine learning framework to predict prognosis and guide treatment.

Frontiers in immunology
BACKGROUND: Hepatocellular carcinoma (HCC) is highly aggressive, with delayed diagnosis, poor prognosis, and a lack of comprehensive and accurate prognostic models to assist clinicians. This study aimed to construct an HCC prognosis-related gene sign...

Interpretable prediction of acute ischemic stroke after hip fracture in patients 65 years and older based on machine learning and SHAP.

Archives of gerontology and geriatrics
BACKGROUND: Hip fracture and acute ischemic stroke (AIS) are prevalent conditions among the older population. The prognosis for older patients who experience AIS subsequent to hip fracture is frequently unfavorable.

Explainable machine learning and online calculators to predict heart failure mortality in intensive care units.

ESC heart failure
AIMS: This study aims to develop explainable machine learning models and clinical tools for predicting mortality in patients in the intensive care unit (ICU) with heart failure (HF).

Machine learning to predict distant metastasis and prognostic analysis of moderately differentiated gastric adenocarcinoma patients: a novel focus on lymph node indicators.

Frontiers in immunology
BACKGROUND: Moderately differentiated gastric adenocarcinoma (MDGA) has a high risk of metastasis and individual variation, which strongly affects patient prognosis. Using large-scale datasets and machine learning algorithms for prediction can improv...

Deep Learning Algorithm‑Based MRI Radiomics and Pathomics for Predicting Microsatellite Instability Status in Rectal Cancer: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate multimodal deep-learning models based on clinical variables, multiparametric MRI (mp-MRI) and hematoxylin and eosin (HE) stained pathology slides for predicting microsatellite instability (MSI) status...