AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Nomograms

Showing 121 to 130 of 336 articles

Clear Filters

Machine Learning-based Nomograms for Predicting Clinical Stages of Initial Prostate Cancer: A Multicenter Retrospective Study.

Urology
OBJECTIVE: To construct and externally validate machine learning-based nomograms for predicting progression stages of initial prostate cancer (PCa) using biomarkers and clinicopathologic features.

A novel model for predicting postoperative liver metastasis in R0 resected pancreatic neuroendocrine tumors: integrating computational pathology and deep learning-radiomics.

Journal of translational medicine
BACKGROUND: Postoperative liver metastasis significantly impacts the prognosis of pancreatic neuroendocrine tumor (panNET) patients after R0 resection. Combining computational pathology and deep learning radiomics can enhance the detection of postope...

Development and experimental validation of hypoxia-related gene signatures for osteosarcoma diagnosis and prognosis based on WGCNA and machine learning.

Scientific reports
Osteosarcoma (OS) is the most common primary malignant tumour of the bone with high mortality. Here, we comprehensively analysed the hypoxia signalling in OS and further constructed novel hypoxia-related gene signatures for OS prediction and prognosi...

Predicting Intracranial Aneurysm Rupture: A Multifactor Analysis Combining Radscore, Morphology, and PHASES Parameters.

Academic radiology
RATIONALE AND OBJECTIVES: We aimed at developing and validating a nomogram and machine learning (ML) models based on radiomics score (Radscore), morphology, and PHASES to predict intracranial aneurysm (IA) rupture.

Machine learning-based integration develops a multiple programmed cell death signature for predicting the clinical outcome and drug sensitivity in colorectal cancer.

Anti-cancer drugs
Tumorigenesis and treatment are closely associated with various programmed cell death (PCD) patterns. However, the coregulatory role of multiple PCD patterns in colorectal cancer (CRC) remains unknown. In this study, we developed a multiple PCD index...

Development and validation of a nomogram to predict impacted ureteral stones via machine learning.

Minerva urology and nephrology
BACKGROUND: To develop and evaluate a nomogram for predicting impacted ureteral stones using some simple and easily available clinical features.

Identification of histopathological classification and establishment of prognostic indicators of gastric adenocarcinoma based on deep learning algorithm.

Medical molecular morphology
The aim of this study is to establish a deep learning (DL) model to predict the pathological type of gastric adenocarcinoma cancer based on whole-slide images(WSIs). We downloaded 356 histopathological images of gastric adenocarcinoma (STAD) patients...

Ultrasound-based deep learning radiomics nomogram for differentiating mass mastitis from invasive breast cancer.

BMC medical imaging
BACKGROUND: The purpose of this study is to develop and validate the potential value of the deep learning radiomics nomogram (DLRN) based on ultrasound to differentiate mass mastitis (MM) and invasive breast cancer (IBC).

A prognostic framework for predicting lung signet ring cell carcinoma via a machine learning based cox proportional hazard model.

Journal of cancer research and clinical oncology
PURPOSE: Signet ring cell carcinoma (SRCC) is a rare type of lung cancer. The conventional survival nomogram used to predict lung cancer performs poorly for SRCC. Therefore, a novel nomogram specifically for studying SRCC is highly required.