OBJECTIVE: To determine if natural language processing (NLP) with machine learning of unstructured full text documents (a preoperative CT scan) improves the ability to predict postoperative complication and hospital readmission among women with ovari...
Circulation. Cardiovascular quality and outcomes
Oct 14, 2020
BACKGROUND: The electronic medical record contains a wealth of information buried in free text. We created a natural language processing algorithm to identify patients with atrial fibrillation (AF) using text alone.
BACKGROUND: Artificial intelligence is touted as the future of medicine. Classical algorithms for the detection of common bile duct stones (CBD) have had poor clinical uptake due to low accuracy. This study explores the challenges of developing and i...
Despite the evidence of improved patients' outcome, fractional flow reserve (FFR) is underused in current everyday practice. We aimed to evaluate the feasibility of a novel automated artificial intelligence angiography-based FFR software (AutocathFFR...
OBJECTIVE: To evaluate by means of regression models the relationships between baseline clinical and laboratory data and lung involvement on baseline chest CT and to quantify the thoracic disease using an artificial intelligence tool and a visual sco...
Circulation. Cardiovascular interventions
Oct 12, 2020
BACKGROUND: Peripheral artery disease (PAD) is underrecognized, undertreated, and understudied: each of these endeavors requires efficient and accurate identification of patients with PAD. Currently, PAD patient identification relies on diagnosis/pro...
This paper proposes a neural network-based model predictive control (MPC) method for robotic manipulators with model uncertainty and input constraints. In the presented NN-based MPC structure, two groups of radial basis function neural networks (RBFN...
The international journal of cardiovascular imaging
Oct 8, 2020
Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intell...
PURPOSE: The Vesical Imaging Reporting and Data System (VI-RADS) was launched in 2018 to standardize reporting of magnetic resonance imaging for bladder cancer. This study aimed to prospectively validate VI-RADS using a next-generation magnetic reson...