AI Medical Compendium Topic:
Prognosis

Clear Filters Showing 621 to 630 of 3158 articles

Integrating cellular experiments, single-cell sequencing, and machine learning to identify endoplasmic reticulum stress biomarkers in idiopathic pulmonary fibrosis.

Annals of medicine
BACKGROUND: Idiopathic Pulmonary Fibrosis (IPF) presents a severe respiratory challenge with a poor prognosis due to the lack of reliable biomarkers. Recent evidence suggests that Endoplasmic Reticulum Stress (ERS) may be associated with IPF pathogen...

Machine-learning based prediction model for acute kidney injury induced by multiple wasp stings.

Toxicon : official journal of the International Society on Toxinology
Acute kidney injury (AKI) following multiple wasp stings is a severe complication with potentially poor outcomes. Despite extensive research on AKI's risk factors, predictive models for wasp sting-related AKI are limited. This study aims to develop a...

Incidence trends, overall survival, and metastasis prediction using multiple machine learning and deep learning techniques in pediatric and adolescent population with osteosarcoma and Ewing's sarcoma: nomogram and webpage.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
OBJECTIVE: The objective of this study was to analyze the incidence and overall survival (OS) of osteosarcoma (OSC) and Ewing's sarcoma (EWS) in a pediatric and adolescent population, employing machine learning (ML) and deep learning (DL) models to p...

Development of a Predictive Hospitalization Model for Skilled Nursing Facility Patients.

Journal of the American Medical Directors Association
OBJECTIVES: Identifying skilled nursing facility (SNF) patients at risk for hospitalization or death is of interest to SNFs, patients, and patients' families because of quality measures, financial penalties, and limited clinical staffing. We aimed to...

Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data.

Computers in biology and medicine
OBJECTIVE: Develop a time-dependent deep learning model to accurately predict the prognosis of pediatric glioma patients, which can assist clinicians in making precise treatment decisions and reducing patient risk.

A deep learning-informed interpretation of why and when dose metrics outside the PTV can affect the risk of distant metastasis in SBRT NSCLC patients.

Radiation oncology (London, England)
PURPOSE: Recent papers suggested a correlation between the risk of distant metastasis (DM) and dose outside the PTV, though conclusions in different publications conflicted. This study resolves these conflicts and provides a compelling explanation of...

Predictive model of prognosis index for invasive micropapillary carcinoma of the breast based on machine learning: a SEER population-based study.

BMC medical informatics and decision making
BACKGROUND: Invasive micropapillary carcinoma (IMPC) is a rare subtype of breast cancer. Its epidemiological features, treatment principles, and prognostic factors remain controversial.

Development and validation of machine learning models for diagnosis and prognosis of lung adenocarcinoma, and immune infiltration analysis.

Scientific reports
The aim of our study was to develop robust diagnostic and prognostic models for lung adenocarcinoma (LUAD) using machine learning (ML) techniques, focusing on early immune infiltration. Feature selection was performed on The Cancer Genome Atlas (TCGA...

Developing machine learning models for personalized treatment strategies in early breast cancer patients undergoing neoadjuvant systemic therapy based on SEER database.

Scientific reports
This study aimed to compare the long-term outcomes of breast-conserving surgery plus radiotherapy (BCS + RT) and mastectomy in early breast cancer (EBC) patients who received neoadjuvant systemic therapy (NST), and sought to construct and authenticat...

Machine learning predicts cuproptosis-related lncRNAs and survival in glioma patients.

Scientific reports
Gliomas are the most common tumor in the central nervous system in adults, with glioblastoma (GBM) representing the most malignant form, while low-grade glioma (LGG) is a less severe. The prognosis for glioma remains poor even after various treatment...