AIMC Topic: Retrospective Studies

Clear Filters Showing 671 to 680 of 9169 articles

Use of ChatGPT Large Language Models to Extract Details of Recommendations for Additional Imaging From Free-Text Impressions of Radiology Reports.

AJR. American journal of roentgenology
Automated extraction of actionable details of recommendations for additional imaging (RAIs) from radiology reports could facilitate tracking and timely completion of clinically necessary RAIs and thereby potentially reduce diagnostic delays. The pu...

The impact of the novel CovBat harmonization method on enhancing radiomics feature stability and machine learning model performance: A multi-center, multi-device study.

European journal of radiology
PURPOSE: This study aims to assess whether the novel CovBat harmonization method can further reduce radiomics feature variability from different imaging devices in multi-center studies and improve machine learning model performance compared to the Co...

Enhancing quantitative coronary angiography (QCA) with advanced artificial intelligence: comparison with manual QCA and visual estimation.

The international journal of cardiovascular imaging
Artificial intelligence-based quantitative coronary angiography (AI-QCA) was introduced to address manual QCA's limitations in reproducibility and correction process. The present study aimed to assess the performance of an updated AI-QCA solution (MP...

A deep learning analysis for dual healthcare system users and risk of opioid use disorder.

Scientific reports
The opioid crisis has disproportionately affected U.S. veterans, leading the Veterans Health Administration to implement opioid prescribing guidelines. Veterans who receive care from both VA and non-VA providers-known as dual-system users-have an inc...

Interpretable machine learning and radiomics in hip MRI diagnostics: comparing ONFH and OA predictions to experts.

Frontiers in immunology
PURPOSE: Distinguishing between Osteonecrosis of the femoral head (ONFH) and Osteoarthritis (OA) can be subjective and vary between users with different backgrounds and expertise. This study aimed to construct and evaluate several Radiomics-based mac...

Machine Learning-Based Real-Time Survival Prediction for Gastric Neuroendocrine Carcinoma.

Annals of surgical oncology
BACKGROUND: This study aimed to develop a dynamic survival prediction model utilizing conditional survival (CS) analysis and machine learning techniques for gastric neuroendocrine carcinomas (GNECs).

Clinical Validation of an AI System for Pneumoconiosis Detection Using Chest X-rays.

Journal of occupational and environmental medicine
OBJECTIVE: The aims of the study were to develop and evaluate "eTóraxLaboral," an intelligent platform for detecting signs of pneumoconiosis in chest radiographs and to assess its predictive capacity.