AIMC Topic:
ROC Curve

Clear Filters Showing 1691 to 1700 of 3214 articles

Prospective Analysis Using a Novel CNN Algorithm to Distinguish Atypical Ductal Hyperplasia From Ductal Carcinoma in Situ in Breast.

Clinical breast cancer
INTRODUCTION: We previously developed a convolutional neural networks (CNN)-based algorithm to distinguish atypical ductal hyperplasia (ADH) from ductal carcinoma in situ (DCIS) using a mammographic dataset. The purpose of this study is to further va...

Matrix factorization with neural network for predicting circRNA-RBP interactions.

BMC bioinformatics
BACKGROUND: Circular RNA (circRNA) has been extensively identified in cells and tissues, and plays crucial roles in human diseases and biological processes. circRNA could act as dynamic scaffolding molecules that modulate protein-protein interactions...

Using machine learning models to predict the initiation of renal replacement therapy among chronic kidney disease patients.

PloS one
Starting renal replacement therapy (RRT) for patients with chronic kidney disease (CKD) at an optimal time, either with hemodialysis or kidney transplantation, is crucial for patient's well-being and for successful management of the condition. In thi...

CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning.

BMC bioinformatics
BACKGROUND: The latest works on CRISPR genome editing tools mainly employs deep learning techniques. However, deep learning models lack explainability and they are harder to reproduce. We were motivated to build an accurate genome editing tool using ...

Effect of congenital adrenal hyperplasia treated by glucocorticoids on plasma metabolome: a machine-learning-based analysis.

Scientific reports
BACKGROUND: Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency leads to impaired cortisol biosynthesis. Treatment includes glucocorticoid supplementation. We studied the specific metabolomics signatures in CAH patients using two di...

A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance.

European radiology
OBJECTIVES: To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance.

Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography.

Occupational and environmental medicine
OBJECTIVES: To investigate the potential of deep learning in assessing pneumoconiosis depicted on digital chest radiographs and to compare its performance with certified radiologists.

A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy.

Breast cancer research : BCR
BACKGROUND: For breast cancer patients undergoing neoadjuvant chemotherapy (NAC), pathologic complete response (pCR; no invasive or in situ) cannot be assessed non-invasively so all patients undergo surgery. The aim of our study was to develop and va...