AIMC Topic: ROC Curve

Clear Filters Showing 1981 to 1990 of 3403 articles

Improvement of classification performance of Parkinson's disease using shape features for machine learning on dopamine transporter single photon emission computed tomography.

PloS one
OBJECTIVE: To assess the classification performance between Parkinson's disease (PD) and normal control (NC) when semi-quantitative indicators and shape features obtained on dopamine transporter (DAT) single photon emission computed tomography (SPECT...

A six‑gene support vector machine classifier contributes to the diagnosis of pediatric septic shock.

Molecular medicine reports
Septic shock is induced by an uncontrolled inflammatory immune response to pathogens and the survival rate of patients with pediatric septic shock (PSS) is particularly low, with a mortality rate of 25‑50%. The present study explored the mechanisms o...

Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis.

European radiology
OBJECTIVES: To propose a transfer learning (TL) radiomics model that efficiently combines the information from gray scale and elastogram ultrasound images for accurate liver fibrosis grading.

Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction.

Journal of computer-aided molecular design
Machine learning methods may have the potential to significantly accelerate drug discovery. However, the increasing rate of new methodological approaches being published in the literature raises the fundamental question of how models should be benchm...

Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: Deep learning convolutional neural networks (CNNs) show great potential for melanoma diagnosis. Melanoma thickness at diagnosis among others depends on melanoma localisation and subtype (e.g. advanced thickness in acrolentiginous or nodul...

Liver tissue classification of en face images by fractal dimension-based support vector machine.

Journal of biophotonics
Full-field optical coherence tomography (FF-OCT) has been reported with its label-free subcellular imaging performance. To realize quantitive cancer detection, the support vector machine model of classifying normal and cancerous human liver tissue is...

Classification of Interstitial Lung Abnormality Patterns with an Ensemble of Deep Convolutional Neural Networks.

Scientific reports
Subtle interstitial changes in the lung parenchyma of smokers, known as Interstitial Lung Abnormalities (ILA), have been associated with clinical outcomes, including mortality, even in the absence of Interstitial Lung Disease (ILD). Although several ...

Convolutional neural network-automated hepatobiliary phase adequacy evaluation may optimize examination time.

European journal of radiology
PURPOSE: To develop and evaluate the performance of a fully-automated convolutional neural network (CNN)-based algorithm to evaluate hepatobiliary phase (HBP) adequacy of gadoxetate disodium (EOB)-enhanced MRI. Secondarily, we explored the potential ...

Deep learning, computer-aided radiography reading for tuberculosis: a diagnostic accuracy study from a tertiary hospital in India.

Scientific reports
In general, chest radiographs (CXR) have high sensitivity and moderate specificity for active pulmonary tuberculosis (PTB) screening when interpreted by human readers. However, they are challenging to scale due to hardware costs and the dearth of pro...