AIMC Topic: ROC Curve

Clear Filters Showing 81 to 90 of 3269 articles

Interpretable machine learning model for predicting post-hepatectomy liver failure in hepatocellular carcinoma.

Scientific reports
Post-hepatectomy liver failure (PHLF) is a severe complication following liver surgery. We aimed to develop a novel, interpretable machine learning (ML) model to predict PHLF. We enrolled 312 hepatocellular carcinoma (HCC) patients who underwent hepa...

Label-free rapid diagnosis of jaw osteonecrosis via the intersection of Raman spectroscopy and deep learning.

Bone
OBJECTIVES: To establish a precise and efficient diagnostic framework for distinguishing medication-related osteonecrosis of the jaw, radiation-induced osteonecrosis of the jaw, and normal bone tissue, thus enhancing clinical decision-making and enab...

Deep learning model for predicting the RAS oncogene status in colorectal cancer liver metastases.

Journal of cancer research and therapeutics
BACKGROUND: To develop a deep learning radiomics (DLR) model based on contrast-enhanced computed tomography (CECT) to assess the rat sarcoma (RAS) oncogene status and predict targeted therapy response in colorectal cancer liver metastases (CRLM).

Machine learning based identification of anoikis related gene classification patterns and immunoinfiltration characteristics in diabetic nephropathy.

Scientific reports
Anoikis and immune cell infiltration are pivotal factors in the pathophysiological mechanism of diabetic nephropathy (DN), yet a comprehensive understanding of the mechanism is lacking. This work aimed to pinpoint distinctive anoikis-related genes (A...

Development and validation a radiomics combined clinical model predicts treatment response for esophageal squamous cell carcinoma patients.

BMC gastroenterology
PURPOSE: This study is aimed to develop and validate a machine learning model, which combined radiomics and clinical characteristics to predicting the definitive chemoradiotherapy (dCRT) treatment response in esophageal squamous cell carcinoma (ESCC)...

Risk for ocular hypertension progression to early glaucoma: A predictive model and key predictors.

Photodiagnosis and photodynamic therapy
BACKGROUND: Ocular hypertension (OHT) is the most significant risk factor for glaucoma. We aimed to develop a model for predicting OHT progression to early glaucoma and to identify key predictors.

Predicting 30-day survival after in-hospital cardiac arrest: a nationwide cohort study using machine learning and SHAP analysis.

BMJ open
OBJECTIVE: In-hospital cardiac arrest (IHCA) presents a critical challenge with low survival rates and limited prediction tools. Despite advances in resuscitation, predicting 30-day survival remains difficult, and current methods lack interpretabilit...

Prediction of acute and chronic kidney diseases during the post-covid-19 pandemic with machine learning models: utilizing national electronic health records in the US.

EBioMedicine
BACKGROUND: COVID-19 has been linked to acute kidney injury (AKI) and chronic kidney disease (CKD), but machine learning (ML) models predicting these risks post-pandemic have been absent. We aimed to use large electronic health records (EHR) and ML a...

A deep learning-based multimodal medical imaging model for breast cancer screening.

Scientific reports
In existing breast cancer prediction research, most models rely solely on a single type of imaging data, which limits their performance. To overcome this limitation, the present study explores breast cancer prediction models based on multimodal medic...

An explainable artificial intelligence framework for weaning outcomes prediction using features from electrical impedance tomography.

Computer methods and programs in biomedicine
BACKGROUND: Prolonged mechanical ventilation (PMV) might cause ventilator-associated pneumonia and diaphragmatic injury, and may lead to worsening clinical weaning outcomes. The present study proposes a comprehensive machine learning (ML) framework f...