AIMC Topic: Transcriptome

Clear Filters Showing 131 to 140 of 855 articles

Construction of an anaplastic thyroid cancer stratification signature to guide immune therapy selection and validation of the pivotal gene HLF through experiments.

Frontiers in immunology
INTRODUCTION: While most thyroid cancer patients have a favorable prognosis, anaplastic thyroid carcinoma (ATC) remains a particularly aggressive form with a median survival time of just five months. Conventional therapies offer limited benefits for ...

DeepQA: A Unified Transcriptome-Based Aging Clock Using Deep Neural Networks.

Aging cell
Understanding the complex biological process of aging is of great value, especially as it can help develop therapeutics to prolong healthy life. Predicting biological age from gene expression data has shown to be an effective means to quantify aging ...

Machine learning based identification of an amino acid metabolism related signature for predicting prognosis and immune microenvironment in pancreatic cancer.

BMC cancer
BACKGROUND: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulat...

Transcriptomic profiling and machine learning reveal novel RNA signatures for enhanced molecular characterization of Hashimoto's thyroiditis.

Scientific reports
While ultrasonography effectively diagnoses Hashimoto's thyroiditis (HT), exploring its transcriptomic landscape could reveal valuable insights into disease mechanisms. This study aimed to identify HT-associated RNA signatures and investigate their p...

Multiparametric MRI along with machine learning predicts prognosis and treatment response in pediatric low-grade glioma.

Nature communications
Pediatric low-grade gliomas (pLGGs) exhibit heterogeneous prognoses and variable responses to treatment, leading to tumor progression and adverse outcomes in cases where complete resection is unachievable. Early prediction of treatment responsiveness...

Deciphering Necroptosis-Associated Molecular Subtypes in Acute Ischemic Stroke Through Bioinformatics and Machine Learning Analysis.

Journal of molecular neuroscience : MN
Acute ischemic stroke (AIS) is a severe disorder characterized by complex pathophysiological processes, which can lead to disability and death. This study aimed to determine necroptosis-associated genes in acute ischemic stroke (AIS) and to investiga...

Identification of key gene signatures for predicting chemo-immunotherapy efficacy in extensive-stage small-cell lung cancer using machine learning.

Lung cancer (Amsterdam, Netherlands)
OBJECTIVES: The lack of definitive biomarkers presents a significant challenge for chemo-immunotherapy in extensive-stage small-cell lung cancer (ES-SCLC). We aimed to identify key genes associated with chemo-immunotherapy efficacy in ES-SCLC through...