AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tuberculosis, Pulmonary

Showing 51 to 60 of 74 articles

Clear Filters

An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Chest X-ray (CXR) is one of the most used imaging techniques for detection and diagnosis of pulmonary diseases. A critical component in any computer-aided system, for either detection or diagnosis in digital CXR, is the auto...

An effective and accurate identification system of Mycobacterium tuberculosis using convolution neural networks.

Microscopy research and technique
Tuberculosis (TB) remains the leading cause of morbidity and mortality from infectious disease in developing countries. The sputum smear microscopy remains the primary diagnostic laboratory test. However, microscopic examination is always time-consum...

How far have we come? Artificial intelligence for chest radiograph interpretation.

Clinical radiology
Due to recent advances in artificial intelligence, there is renewed interest in automating interpretation of imaging tests. Chest radiographs are particularly interesting due to many factors: relatively inexpensive equipment, importance to public hea...

Deep Learning Algorithms with Demographic Information Help to Detect Tuberculosis in Chest Radiographs in Annual Workers' Health Examination Data.

International journal of environmental research and public health
We aimed to use deep learning to detect tuberculosis in chest radiographs in annual workers' health examination data and compare the performances of convolutional neural networks (CNNs) based on images only (I-CNN) and CNNs including demographic vari...

Tuberculosis diagnosis support analysis for precarious health information systems.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Pulmonary tuberculosis is a world emergency for the World Health Organization. Techniques and new diagnosis tools are important to battle this bacterial infection. There have been many advances in all those fields, but in de...

Pre-trained convolutional neural networks as feature extractors for tuberculosis detection.

Computers in biology and medicine
It is estimated that in 2015, approximately 1.8 million people infected by tuberculosis died, most of them in developing countries. Many of those deaths could have been prevented if the disease had been detected at an earlier stage, but the most adva...

Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks.

Radiology
Purpose To evaluate the efficacy of deep convolutional neural networks (DCNNs) for detecting tuberculosis (TB) on chest radiographs. Materials and Methods Four deidentified HIPAA-compliant datasets were used in this study that were exempted from revi...