AI Medical Compendium Journal:
BMC cancer

Showing 21 to 30 of 162 articles

Integration of graph neural networks and transcriptomics analysis identify key pathways and gene signature for immunotherapy response and prognosis of skin melanoma.

BMC cancer
OBJECTIVE: The assessment of immunotherapy plays a pivotal role in the clinical management of skin melanoma. Graph neural networks (GNNs), alongside other deep learning algorithms and bioinformatics approaches, have demonstrated substantial promise i...

Combining multi-omics analysis with machine learning to uncover novel molecular subtypes, prognostic markers, and insights into immunotherapy for melanoma.

BMC cancer
BACKGROUND: Melanoma (SKCM) is an extremely aggressive form of cancer, characterized by high mortality rates, frequent metastasis, and limited treatment options. Our study aims to identify key target genes and enhance the diagnostic accuracy of melan...

CausalCervixNet: convolutional neural networks with causal insight (CICNN) in cervical cancer cell classification-leveraging deep learning models for enhanced diagnostic accuracy.

BMC cancer
Cervical cancer is a significant global health issue affecting women worldwide, necessitating prompt detection and effective management. According to the World Health Organization (WHO), approximately 660,000 new cases of cervical cancer and 350,000 ...

A deep learning model for classification of chondroid tumors on CT images.

BMC cancer
BACKGROUND: Differentiating chondroid tumors is crucial for proper patient management. This study aimed to develop a deep learning model (DLM) for classifying enchondromas, atypical cartilaginous tumors (ACT), and high-grade chondrosarcomas using CT ...

Identification of testicular cancer with T2-weighted MRI-based radiomics and automatic machine learning.

BMC cancer
BACKGROUND: Distinguishing between benign and malignant testicular lesions on clinical magnetic resonance imaging (MRI) is crucial for guiding treatment planning. However, conventional MRI-based radiomics to identify testicular cancer requires expert...

Enhancing prediction and stratifying risk: machine learning and bayesian-learning models for catheter-related thrombosis in chemotherapy patients.

BMC cancer
BACKGROUND: Catheter-related thrombosis (CRT) is a serious complication in cancer patients undergoing chemotherapy, yet existing risk prediction models demonstrate limited accuracy. This study aimed to evaluate the clinical utility of machine learnin...

Thyroid nodule classification in ultrasound imaging using deep transfer learning.

BMC cancer
BACKGROUND: The accurate diagnosis of thyroid nodules represents a critical and frequently encountered challenge in clinical practice, necessitating enhanced precision in diagnostic methodologies. In this study, we investigate the predictive efficacy...

Using machine learning for predicting cancer-specific mortality in bladder cancer patients undergoing radical cystectomy: a SEER-based study.

BMC cancer
BACKGROUND: Accurately assessing the prognosis of bladder cancer patients after radical cystectomy has important clinical and research implications. Current models, based on traditional statistical approaches and complex variables, have limited perfo...

A risk prediction model for gastric cancer based on endoscopic atrophy classification.

BMC cancer
BACKGROUNDS: Gastric cancer (GC) is a prevalent malignancy affecting the digestive system. We aimed to develop a risk prediction model based on endoscopic atrophy classification for GC.