AIMC Topic: Aged

Clear Filters Showing 1271 to 1280 of 12579 articles

Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency department.

Scientific reports
Radiocontrast media is a major cause of nephrotoxic acute kidney injury(AKI). Contrast-enhanced CT(CE-CT) is commonly performed in emergency departments(ED). Predicting individualized risks of contrast-associated AKI(CA-AKI) in ED patients is challen...

Improving ALS detection and cognitive impairment stratification with attention-enhanced deep learning models.

Scientific reports
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease marked by motor deterioration and cognitive decline. Early diagnosis is challenging due to the complexity of sporadic ALS and the lack of a defined risk population. In this study, we...

Using machine learning to predict deterioration of symptoms in COPD patients within a telemonitoring program.

Scientific reports
COPD exacerbations have a profound clinical impact on patients. Accurately predicting these events could help healthcare professionals take proactive measures to mitigate their impact. For over a decade, telEPOC, a telehealthcare program, has collect...

Neurofind: using deep learning to make individualised inferences in brain-based disorders.

Translational psychiatry
Within precision psychiatry, there is a growing interest in normative models given their ability to parse heterogeneity. While they are intuitive and informative, the technical expertise and resources required to develop normative models may not be a...

Machine Learning-Based Mortality Prediction for Acute Gastrointestinal Bleeding Patients Admitted to Intensive Care Unit.

Current medical science
OBJECTIVE: The study aimed to develop machine learning (ML) models to predict the mortality of patients with acute gastrointestinal bleeding (AGIB) in the intensive care unit (ICU) and compared their prognostic performance with that of Acute Physiolo...

Machine learning-driven ultrasound radiomics for assessing axillary lymph node burden in breast cancer.

Frontiers in endocrinology
OBJECTIVE: This study explores the value of combining intratumoral and peritumoral radiomics features from ultrasound imaging with clinical characteristics to assess axillary lymph node burden in breast cancer patients.

Multi-parametric MRI Habitat Radiomics Based on Interpretable Machine Learning for Preoperative Assessment of Microsatellite Instability in Rectal Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: This study constructed an interpretable machine learning model based on multi-parameter MRI sub-region habitat radiomics and clinicopathological features, aiming to preoperatively evaluate the microsatellite instability (MSI...

Using prognostic signatures and machine learning to identify core features associated with response to CDK4/6 inhibitor-based therapy in metastatic breast cancer.

Oncogene
CDK4/6 inhibitors in combination with endocrine therapy are widely used to treat HR+/HER2- metastatic breast cancer leading to improved progression-free survival (PFS) compared to single agent endocrine therapy. Over 300 patients receiving standard-o...

A spectral machine learning approach to derive central aortic pressure waveforms from a brachial cuff.

Proceedings of the National Academy of Sciences of the United States of America
Analyzing cardiac pulse waveforms offers valuable insights into heart health and cardiovascular disease risk, although obtaining the more informative measurements from the central aorta remains challenging due to their invasive nature and limited non...

Deep Learning for Lumbar Disc Herniation Diagnosis and Treatment Decision-Making Using Magnetic Resonance Imagings: A Retrospective Study.

World neurosurgery
BACKGROUND: Lumbar disc herniation (LDH) is a common cause of back and leg pain. Diagnosis relies on clinical history, physical exam, and imaging, with magnetic resonance imaging (MRI) being an important reference standard. While artificial intellige...