AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biomarkers, Tumor

Showing 91 to 100 of 979 articles

Clear Filters

Machine Learning-Aided Intelligent Monitoring of Multivariate miRNA Biomarkers Using Bipolar Self-powered Sensors.

ACS nano
Breast cancer has become the most prevalent form of cancer among women on a global scale. The early and timely diagnosis of breast cancer is of the utmost importance for improving the survival rate of patients with this disease. The occurrence of bre...

Untargeted Lipidomic Biomarkers for Liver Cancer Diagnosis: A Tree-Based Machine Learning Model Enhanced by Explainable Artificial Intelligence.

Medicina (Kaunas, Lithuania)
: Liver cancer ranks among the leading causes of cancer-related mortality, necessitating the development of novel diagnostic methods. Deregulated lipid metabolism, a hallmark of hepatocarcinogenesis, offers compelling prospects for biomarker identifi...

Development of a tertiary lymphoid structure-based prognostic model for breast cancer: integrating single-cell sequencing and machine learning to enhance patient outcomes.

Frontiers in immunology
BACKGROUND: Breast cancer, a highly prevalent global cancer, poses significant challenges, especially in advanced stages. Prognostic models are crucial to enhance patient outcomes. Tertiary lymphoid structures (TLS) within the tumor microenvironment ...

Machine learning-derived prognostic signature integrating programmed cell death and mitochondrial function in renal clear cell carcinoma: identification of PIF1 as a novel target.

Cancer immunology, immunotherapy : CII
BACKGROUND: The pathogenesis and progression of renal cell carcinoma (RCC) involve complex programmed cell death (PCD) processes. As the powerhouse of the cell, mitochondria can influence cell death mechanisms. However, the prognostic significance of...

Big data analysis and machine learning of the role of cuproptosis-related long non-coding RNAs (CuLncs) in the prognosis and immune landscape of ovarian cancer.

Frontiers in immunology
BACKGROUND: Ovarian cancer (OC) is a severe malignant tumor with a significant threat to women's health, characterized by a high mortality rate and poor prognosis despite conventional treatments such as cytoreductive surgery and platinum-based chemot...

Integrated multiomics analysis and machine learning refine neutrophil extracellular trap-related molecular subtypes and prognostic models for acute myeloid leukemia.

Frontiers in immunology
BACKGROUND: Neutrophil extracellular traps (NETs) play pivotal roles in various pathological processes. The formation of NETs is impaired in acute myeloid leukemia (AML), which can result in immunodeficiency and increased susceptibility to infection.

From text to insight: A natural language processing-based analysis of burst and research trends in HER2-low breast cancer patients.

Ageing research reviews
With the intensification of population aging, the proportion of elderly breast cancer patients is continuously increasing, among which those with low HER2 expression account for approximately 45 %-55 % of all cases within traditional HER2-negative br...

Biomarkers, omics and artificial intelligence for early detection of pancreatic cancer.

Seminars in cancer biology
Pancreatic ductal adenocarcinoma (PDAC) is frequently diagnosed in its late stages when treatment options are limited. Unlike other common cancers, there are no population-wide screening programmes for PDAC. Thus, early disease detection, although ur...

Pathology-based deep learning features for predicting basal and luminal subtypes in bladder cancer.

BMC cancer
BACKGROUND: Bladder cancer (BLCA) exists a profound molecular diversity, with basal and luminal subtypes having different prognostic and therapeutic outcomes. Traditional methods for molecular subtyping are often time-consuming and resource-intensive...