AIMC Topic: Carcinoma, Hepatocellular

Clear Filters Showing 31 to 40 of 393 articles

Controlling nutritional status score predicts posthepatectomy liver failure: an online interpretable machine learning prediction model.

European journal of gastroenterology & hepatology
BACKGROUND AND AIMS: Posthepatectomy liver failure (PHLF) remains a severe complication after hepatectomy for hepatocellular carcinoma (HCC) and accurate preoperative evaluation and predictive measures are urgently needed. We investigated the impact ...

Deep learning for hepatocellular carcinoma recurrence before and after liver transplantation: a multicenter cohort study.

Scientific reports
Hepatocellular carcinoma (HCC) recurrence after liver transplantation (LT) is a major contributor to mortality. We developed a recurrence prediction system for HCC patients before and after LT. Data from patients with HCC who underwent LT were retros...

Predicting the complexity of minimally invasive liver resection for hepatocellular carcinoma using machine learning.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: Despite technical advancements, minimally invasive liver surgery (MILS) for hepatocellular carcinoma (HCC) remains challenging. Nonetheless, effective tools to assess MILS complexity are still lacking. Machine learning (ML) models could i...

Machine learning analysis identified NNMT as a potential therapeutic target for hepatocellular carcinoma based on PCD-related genes.

Scientific reports
Programmed cell death (PCD) plays a critical role in cancer biology, influencing tumor progression and treatment response. This study aims to investigate the role of PCD-related genes in hepatocellular carcinoma (HCC), identifying potential prognosti...

Predicting hepatocellular carcinoma survival with artificial intelligence.

Scientific reports
Despite the extensive research on hepatocellular carcinoma (HCC) exploring various treatment strategies, the survival outcomes have remained unsatisfactory. The aim of this research was to evaluate the ability of machine learning (ML) methods in pred...

An interpretable ensemble model combining handcrafted radiomics and deep learning for predicting the overall survival of hepatocellular carcinoma patients after stereotactic body radiation therapy.

Journal of cancer research and clinical oncology
PURPOSE: Hepatocellular carcinoma (HCC) remains a global health concern, marked by increasing incidence rates and poor outcomes. This study seeks to develop a robust predictive model by integrating radiomics and deep learning features with clinical d...

ChatExosome: An Artificial Intelligence (AI) Agent Based on Deep Learning of Exosomes Spectroscopy for Hepatocellular Carcinoma (HCC) Diagnosis.

Analytical chemistry
Large language models (LLMs) hold significant promise in the field of medical diagnosis. There are still many challenges in the direct diagnosis of hepatocellular carcinoma (HCC). α-Fetoprotein (AFP) is a commonly used tumor marker for liver cancer. ...

Excited state kinetics of tryptophan and NAD(P)H in blood plasma of normal and abnormal liver conditions: A tool to understand the metabolic changes and classification.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Early diagnosis at the metabolomic level is crucial for the treatment of liver cirrhosis and hepatocellular carcinoma (HCC). In this study, attempts were made to investigate the excited-state kinetics of intrinsic fluorophores, tryptophan and nicotin...