AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Cell Transformation, Neoplastic

Showing 11 to 20 of 20 articles

Clear Filters

Genome instability model of metastatic neuroblastoma tumorigenesis by a dictionary learning algorithm.

BMC medical genomics
BACKGROUND: Metastatic neuroblastoma (NB) occurs in pediatric patients as stage 4S or stage 4 and it is characterized by heterogeneous clinical behavior associated with diverse genotypes. Tumors of stage 4 contain several structural copy number aberr...

Computer aided prognosis for cell death categorization and prediction in vivo using quantitative ultrasound and machine learning techniques.

Medical physics
PURPOSE: At present, a one-size-fits-all approach is typically used for cancer therapy in patients. This is mainly because there is no current imaging-based clinical standard for the early assessment and monitoring of cancer treatment response. Here,...

Identification of transcription factors that may reprogram lung adenocarcinoma.

Artificial intelligence in medicine
BACKGROUND: Lung adenocarcinoma is one of most threatening disease to human health. Although many efforts have been devoted to its genetic study, few researches have been focused on the transcription factors which regulate tumor initiation and progre...

Advances in the computational and molecular understanding of the prostate cancer cell nucleus.

Journal of cellular biochemistry
Nuclear alterations are a hallmark of many types of cancers, including prostate cancer (PCa). Recent evidence shows that subvisual changes, ones that may not be visually perceptible to a pathologist, to the nucleus and its ultrastructural components ...

Prediction of melanoma evolution in melanocytic nevi via artificial intelligence: A call for prospective data.

European journal of cancer (Oxford, England : 1990)
Recent research revealed the superiority of artificial intelligence over dermatologists to diagnose melanoma from images. However, 30-50% of all melanomas and more than half of those in young patients evolve from initially benign lesions. Despite its...

Identification of Latent Oncogenes with a Network Embedding Method and Random Forest.

BioMed research international
Oncogene is a special type of genes, which can promote the tumor initiation. Good study on oncogenes is helpful for understanding the cause of cancers. Experimental techniques in early time are quite popular in detecting oncogenes. However, their def...

Machine learning-based investigation of the cancer protein secretory pathway.

PLoS computational biology
Deregulation of the protein secretory pathway (PSP) is linked to many hallmarks of cancer, such as promoting tissue invasion and modulating cell-cell signaling. The collection of secreted proteins processed by the PSP, known as the secretome, is ofte...

In silico saturation mutagenesis of cancer genes.

Nature
Despite the existence of good catalogues of cancer genes, identifying the specific mutations of those genes that drive tumorigenesis across tumour types is still a largely unsolved problem. As a result, most mutations identified in cancer genes acros...

Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia.

The Journal of pathology
Artificial intelligence-based tools designed to assist in the diagnosis of lymphoid neoplasms remain limited. The development of such tools can add value as a diagnostic aid in the evaluation of tissue samples involved by lymphoma. A common diagnosti...