AIMC Topic: Contrast Media

Clear Filters Showing 431 to 440 of 565 articles

Plaque components segmentation in carotid artery on simultaneous non-contrast angiography and intraplaque hemorrhage imaging using machine learning.

Magnetic resonance imaging
PURPOSE: This study sought to determine the feasibility of using Simultaneous Non-contrast Angiography and intraPlaque Hemorrhage (SNAP) to detect the lipid-rich/necrotic core (LRNC), and develop a machine learning based algorithm to segment plaque c...

Detection and characterization of MRI breast lesions using deep learning.

Diagnostic and interventional imaging
PURPOSE: The purpose of this study was to assess the potential of a deep learning model to discriminate between benign and malignant breast lesions using magnetic resonance imaging (MRI) and characterize different histological subtypes of breast lesi...

DeepCEST: 9.4 T Chemical exchange saturation transfer MRI contrast predicted from 3 T data - a proof of concept study.

Magnetic resonance in medicine
PURPOSE: To determine the feasibility of employing the prior knowledge of well-separated chemical exchange saturation transfer (CEST) signals in the 9.4 T Z-spectrum to separate overlapping CEST signals acquired at 3 T, using a deep learning approach...

Automated selection of myocardial inversion time with a convolutional neural network: Spatial temporal ensemble myocardium inversion network (STEMI-NET).

Magnetic resonance in medicine
PURPOSE: Delayed enhancement imaging is an essential component of cardiac MRI, which is used widely for the evaluation of myocardial scar and viability. The selection of an optimal inversion time (TI) or null point (TI ) to suppress the background my...

Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks.

IEEE transactions on bio-medical engineering
OBJECTIVE: To develop an automated vessel wall segmentation method using convolutional neural networks to facilitate the quantification on magnetic resonance (MR) vessel wall images of patients with intracranial atherosclerotic disease (ICAD).

A Comparative Texture Analysis Based on NECT and CECT Images to Differentiate Lung Adenocarcinoma from Squamous Cell Carcinoma.

Journal of medical systems
The purpose of the study was to compare the texture based discriminative performances between non-contrast enhanced computed tomography (NECT) and contrast-enhanced computed tomography (CECT) images in differentiating lung adenocarcinoma (ADC) from s...

Automated Segmentation of Colorectal Tumor in 3D MRI Using 3D Multiscale Densely Connected Convolutional Neural Network.

Journal of healthcare engineering
The main goal of this work is to automatically segment colorectal tumors in 3D T2-weighted (T2w) MRI with reasonable accuracy. For such a purpose, a novel deep learning-based algorithm suited for volumetric colorectal tumor segmentation is proposed. ...

Ultra-Low-Dose Neck CT With Low-Dose Contrast Material for Preoperative Staging of Thyroid Cancer: Image Quality and Diagnostic Performance.

AJR. American journal of roentgenology
OBJECTIVE: Although CT has been used as a complementary diagnostic method for the preoperative diagnosis of thyroid cancer, it has the shortcomings of substantial radiation exposure and the use of contrast material (CM). The purpose of this article i...