While insect monitoring is a prerequisite for precise decision-making regarding integrated pest management (IPM), it is time- and cost-intensive. Low-cost, time-saving and easy-to-operate tools for automated monitoring will therefore play a key role ...
Prostate cancer (PCa), the second leading cause of cancer death in American men, is a relatively slow-growing malignancy with multiple early treatment options. Yet, a significant number of low-risk PCa patients are over-diagnosed and over-treated wit...
Annual review of biomedical data science
May 14, 2021
The COVID-19 (coronavirus disease 2019) pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fund...
Deep learning may transform health care, but model development has largely been dependent on availability of advanced technical expertise. Herein we present the development of a deep learning model by clinicians without coding, which predicts reporte...
Resistance to ionizing radiation, a first-line therapy for many cancers, is a major clinical challenge. Personalized prediction of tumor radiosensitivity is not currently implemented clinically due to insufficient accuracy of existing machine learnin...
Generative adversarial network (GAN) creates synthetic images to increase data quantity, but whether GAN ensures meaningful morphologic variations is still unknown. We investigated whether GAN-based synthetic images provide sufficient morphologic var...
The past decade has evinced a boom of computer-based approaches to aid movement assessment in early infancy. Increasing interests have been dedicated to develop AI driven approaches to complement the classic Prechtl general movements assessment (GMA)...
Classification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) by humans remains challenging. We proposed a highly accessible method to develop a deep learning (DL) model and implement the model for mosquito image classification by using har...
BACKGROUND: One challenge to train deep convolutional neural network (CNNs) models with whole slide images (WSIs) is providing the required large number of costly, manually annotated image regions. Strategies to alleviate the scarcity of annotated da...
Diabetic retinopathy (DR) is a leading cause of blindness and affects millions of people throughout the world. Early detection and timely checkups are key to reduce the risk of blindness. Automated grading of DR is a cost-effective way to ensure earl...