AIMC Topic: Epithelial-Mesenchymal Transition

Clear Filters Showing 1 to 10 of 29 articles

Machine learning and multi-omics analysis reveal key regulators of proneural-mesenchymal transition in glioblastoma.

Scientific reports
Glioblastoma (GBM) is classified into subtypes according to the molecular expression profile; the proneural subtype has a relatively good prognosis, and the mesenchymal type is the most aggressive form with the worst prognosis. GBM undergoes proneura...

Extensible Immunofluorescence (ExIF) accessibly generates high-plexity datasets by integrating standard 4-plex imaging data.

Nature communications
Standard immunofluorescence imaging captures just ~4 molecular markers (4-plex) per cell, limiting dissection of complex biology. Inspired by multimodal omics-based data integration approaches, we propose an Extensible Immunofluorescence (ExIF) frame...

Annotation-free deep learning algorithm trained on hematoxylin & eosin images predicts epithelial-to-mesenchymal transition phenotype and endocrine response in estrogen receptor-positive breast cancer.

Breast cancer research : BCR
Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a m...

AGML: Adaptive Graph-Based Multi-Label Learning for Prediction of RBP and as Event Associations During EMT.

IEEE/ACM transactions on computational biology and bioinformatics
Increasing evidence has indicated that RNA-binding proteins (RBPs) play an essential role in mediating alternative splicing (AS) events during epithelial-mesenchymal transition (EMT). However, due to the substantial cost and complexity of biological ...

Machine learning model reveals the role of angiogenesis and EMT genes in glioma patient prognosis and immunotherapy.

Biology direct
Gliomas represent a highly aggressive class of tumors located in the brain. Despite the availability of multiple treatment modalities, the prognosis for patients diagnosed with glioma remains unfavorable. Therefore, further exploration of new biomark...

Spatially Informed Graph Structure Learning Extracts Insights from Spatial Transcriptomics.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Embeddings derived from cell graphs hold significant potential for exploring spatial transcriptomics (ST) datasets. Nevertheless, existing methodologies rely on a graph structure defined by spatial proximity, which inadequately represents the diversi...

Combined High-Throughput Proteomics and Random Forest Machine-Learning Approach Differentiates and Classifies Metabolic, Immune, Signaling and ECM Intra-Tumor Heterogeneity of Colorectal Cancer.

Cells
Colorectal cancer (CRC) is a frequent, worldwide tumor described for its huge complexity, including inter-/intra-heterogeneity and tumor microenvironment (TME) variability. Intra-tumor heterogeneity and its connections with metabolic reprogramming an...

Machine learning and experimental analyses identified miRNA expression models associated with metastatic osteosarcoma.

Biochimica et biophysica acta. Molecular basis of disease
Osteosarcoma (OS), as the most common primary bone cancer, has a high invasiveness and metastatic potential, therefore, it has a poor prognosis. This study identified early diagnostic biomarkers using miRNA expression profiles associated with osteosa...

Machine learning identifies activation of RUNX/AP-1 as drivers of mesenchymal and fibrotic regulatory programs in gastric cancer.

Genome research
Gastric cancer (GC) is the fifth most common cancer worldwide and is a heterogeneous disease. Among GC subtypes, the mesenchymal phenotype (Mes-like) is more invasive than the epithelial phenotype (Epi-like). Although gene expression of the epithelia...

Identification of LPCAT1 as a key biomarker for Crohn's disease based on bioinformatics and machine learnings and experimental verification.

Gene
Epithelial-mesenchymal transition (EMT) plays a crucial role in regulating inflammatory responses and fibrosis formation. This study aims to explore the molecular mechanisms of EMT-related genes in Crohn's disease (CD) through bioinformatics methods ...