AIMC Topic: Gene Regulatory Networks

Clear Filters Showing 61 to 70 of 685 articles

Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning.

Scientific reports
Atherosclerosis is the major cause of cardiovascular diseases worldwide, and AIDS linked with chronic inflammation and immune activation, increases atherosclerosis risk. The application of bioinformatics and machine learning to identify hub genes for...

Integrative Multi-Omics Analysis Reveals Molecular Subtypes of Ovarian Cancer and Constructs Prognostic Models.

Journal of immunotherapy (Hagerstown, Md. : 1997)
Ovarian cancer (OV) remains the most lethal gynecological malignancy. The aim of this study was to identify molecular subtypes of OV through integrative multi-omics analysis and construct machine learning-based prognostic models for predicting the ef...

Identification of thyroid cancer biomarkers using WGCNA and machine learning.

European journal of medical research
OBJECTIVE: The incidence of thyroid cancer (TC) is increasing in China, largely due to overdiagnosis from widespread screening and improved ultrasound technology. Identifying precise TC biomarkers is crucial for accurate diagnosis and effective treat...

Characterization of Enterocytozoon hepatopenaei infection stages in shrimp using machine learning and gene network analysis.

Journal of invertebrate pathology
Enterocytozoon hepatopenaei (EHP), causing hepatopancreatic microsporidiosis (HPM), significantly impacts Litopenaeus vannamei, leading to economic losses. Using bioinformatics and machine learning, this study characterized EHP infection stages and h...

5-Repurposed Drug Candidates Identified in Motor Neurons and Muscle Tissues with Amyotrophic Lateral Sclerosis by Network Biology and Machine Learning Based on Gene Expression.

Neuromolecular medicine
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that leads to motor neuron degeneration, muscle weakness, and respiratory failure. Despite ongoing research, effective treatments for ALS are limited. This study aimed to...

Integrating single-cell RNA sequencing, WGCNA, and machine learning to identify key biomarkers in hepatocellular carcinoma.

Scientific reports
The microarray and single-cell RNA-sequencing (scRNA-seq) datasets of hepatocellular carcinoma (HCC) were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (W...

Identification of biomarkers associated with M1 macrophages in the ST-segment elevation myocardial infarction through bioinformatics and machine learning approaches.

Scientific reports
ST-segment elevation myocardial infarction (STEMI) is considered a critical cardiac condition with a poor prognosis. Shortly after STEMI occurs, the increased number of circulating leukocytes including macrophages can lead to the accumulation of more...

Deep Neural Network-Mining of Rice Drought-Responsive TF-TAG Modules by a Combinatorial Analysis of ATAC-Seq and RNA-Seq.

Plant, cell & environment
Drought is a critical risk factor that impacts rice growth and yields. Previous studies have focused on the regulatory roles of individual transcription factors in response to drought stress. However, there is limited understanding of multi-factor st...

Machine Learning Identification of Neutrophil Extracellular Trap-Related Genes as Potential Biomarkers and Therapeutic Targets for Bronchopulmonary Dysplasia.

International journal of molecular sciences
Neutrophil extracellular traps (NETs) play a key role in the development of bronchopulmonary dysplasia (BPD), yet their molecular mechanisms in contributing to BPD remain unexplored. Using the GSE32472 dataset, which includes 100 blood samples from p...