AIMC Topic: Lung Neoplasms

Clear Filters Showing 91 to 100 of 1666 articles

Habitat Radiomics and Deep Learning Features Based on CT for Predicting Lymphovascular Invasion in T1-stage Lung Adenocarcinoma: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: The research aims to examine how CT-derived habitat radiomics can be used to predict lymphovascular invasion (LVI) in patients with T1-stage lung adenocarcinoma (LUAD), and compare its effectiveness to traditional radiomics ...

Updated perspectives on visceral pleural invasion in non-small cell lung cancer: A propensity score-matched analysis of the SEER database.

Current problems in cancer
BACKGROUND: Visceral pleural invasion (VPI), including PL1 (the tumor invades beyond the elastic layer) and PL2 (the tumor extends to the surface of the visceral pleura), plays a crucial role in staging Non-Small Cell Lung Cancer (NSCLC). However, th...

Hierarchical embedding attention for overall survival prediction in lung cancer from unstructured EHRs.

BMC medical informatics and decision making
The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER...

Smart contours: deep learning-driven internal gross tumor volume delineation in non-small cell lung cancer using 4D CT maximum and average intensity projections.

Radiation oncology (London, England)
BACKGROUND: Delineating the internal gross tumor volume (IGTV) is crucial for the treatment of non-small cell lung cancer (NSCLC). Deep learning (DL) enables the automation of this process; however, current studies focus mainly on multiple phases of ...

Decoding Recurrence in Early-Stage and Locoregionally Advanced Non-Small Cell Lung Cancer: Insights From Electronic Health Records and Natural Language Processing.

JCO clinical cancer informatics
PURPOSE: Recurrences after curative resection in early-stage and locoregionally advanced non-small cell lung cancer (NSCLC) are common, necessitating a nuanced understanding of associated risk factors. This study aimed to establish a natural language...

The role and machine learning analysis of mitochondrial autophagy-related gene expression in lung adenocarcinoma.

Frontiers in immunology
OBJECTIVE: Lung adenocarcinoma (LUAD) continues to be a primary cause of cancer-related mortality globally, highlighting the urgent need for novel insights finto its molecular mechanisms. This study aims to investigate the relationship between gene e...

Single-Cell Sequencing-Guided Annotation of Rare Tumor Cells for Deep Learning-Based Cytopathologic Diagnosis of Early Lung Cancer.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Deep learning (DL) models for medical image analysis are majorly bottlenecked by the lack of well-annotated datasets. Bronchoalveolar lavage (BAL) is a minimally invasive procedure to diagnose lung cancer, but BAL cytology suffers from low sensitivit...

Prediction of postoperative intensive care unit admission with artificial intelligence models in non-small cell lung carcinoma.

European journal of medical research
BACKGROUND: There is no standard practice for intensive care admission after non-small cell lung cancer surgery. In this study, we aimed to determine the need for intensive care admission after non-small cell lung cancer surgery with deep learning mo...

Development and validation of a nomogram model of lung metastasis in breast cancer based on machine learning algorithm and cytokines.

BMC cancer
BACKGROUND: The relationship between cytokines and lung metastasis (LM) in breast cancer (BC) remains unclear and current clinical methods for identifying breast cancer lung metastasis (BCLM) lack precision, thus underscoring the need for an accurate...