AIMC Topic:
Middle Aged

Clear Filters Showing 1081 to 1090 of 14046 articles

Dynamic HRV Monitoring and Machine Learning Predict NYHA Improvements in Acute Heart Failure Patients.

Computers in biology and medicine
Heart failure (HF) is marked by significant morbidity, mortality, and readmission rates, highlighting a critical need for accurate assessment of treatment efficacy. The New York Heart Association (NYHA) classification, while standard, falls short in ...

An explainable non-invasive hybrid machine learning framework for accurate prediction of thyroid-stimulating hormone levels.

Computers in biology and medicine
Machine learning models, including thyroid biomarkers, are increasingly utilized in healthcare for biomarker prediction. These models offer the potential to enhance disease diagnosis through data-driven approaches relying on non-invasive techniques. ...

Development and validation of radiomics and deep transfer learning models to assess cognitive impairment in patients with cerebral small vessel disease.

Neuroscience
Cognitive impairment in cerebral small vessel disease (CSVD) progresses subtly but carries significant clinical consequences, necessitating effective diagnostic tools. This study developed and validated predictive models for CSVD-related cognitive im...

Machine learning explainability for survival outcome in head and neck squamous cell carcinoma.

International journal of medical informatics
BACKGROUND: Diagnosis and treatment of head and neck squamous cell carcinoma (HNSCC) induces psychological variables and treatment-related toxicity in patients. The evaluation of outcomes is warranted for effective treatment planning and improved dis...

Diagnostic value of deep learning of multimodal imaging of thyroid for TI-RADS category 3-5 classification.

Endocrine
BACKGROUND: Thyroid nodules classified within the Thyroid Imaging Reporting and Data Systems (TI-RADS) category 3-5 are typically regarded as having varying degrees of malignancy risk, with the risk increasing from TI-RADS 3 to TI-RADS 5. While some ...

Machine learning to detect Alzheimer's disease with data on drugs and diagnoses.

The journal of prevention of Alzheimer's disease
BACKGROUND: Integrating machine learning with medical records offers potential for early detection of Alzheimer's disease (AD), enabling timely interventions.

Machine Learning Models Integrating Dietary Indicators Improve the Prediction of Progression from Prediabetes to Type 2 Diabetes Mellitus.

Nutrients
: Diet plays an important role in preventing and managing the progression from prediabetes to type 2 diabetes mellitus (T2DM). This study aims to develop prediction models incorporating specific dietary indicators and explore the performance in T2DM ...

Comparison of Deep Learning and Traditional Machine Learning Models for Predicting Mild Cognitive Impairment Using Plasma Proteomic Biomarkers.

International journal of molecular sciences
Mild cognitive impairment (MCI) is a clinical condition characterized by a decline in cognitive ability and progression of cognitive impairment. It is often considered a transitional stage between normal aging and Alzheimer's disease (AD). This study...

Prediction of tumor spread through air spaces with an automatic segmentation deep learning model in peripheral stage I lung adenocarcinoma.

Respiratory research
BACKGROUND: To evaluate the clinical applicability of deep learning (DL) models based on automatic segmentation in preoperatively predicting tumor spread through air spaces (STAS) in peripheral stage I lung adenocarcinoma (LUAD).