AIMC Topic: Nomograms

Clear Filters Showing 191 to 200 of 376 articles

Development of an immunoinflammatory indicator-related dynamic nomogram based on machine learning for the prediction of intravenous immunoglobulin-resistant Kawasaki disease patients.

International immunopharmacology
BACKGROUND: Approximately 10-20% of Kawasaki disease (KD) patients suffer from intravenous immunoglobulin (IVIG) resistance, placing them at higher risk of developing coronary artery aneurysms. Therefore, we aimed to construct an IVIG resistance pred...

Identifying lncRNAs and mRNAs related to survival of NSCLC based on bioinformatic analysis and machine learning.

Aging
Non-small cell lung cancer (NSCLC) is the most common histopathological type, and it is purposeful for screening potential prognostic biomarkers for NSCLC. This study aims to identify the lncRNAs and mRNAs related to survival of non-small cell lung c...

A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study.

International journal of surgery (London, England)
BACKGROUND: Muscle invasive bladder cancer (MIBC) has a poor prognosis even after radical cystectomy (RC). Postoperative survival stratification based on radiomics and deep learning (DL) algorithms may be useful for treatment decision-making and foll...

Analysis of Bladder Cancer Staging Prediction Using Deep Residual Neural Network, Radiomics, and RNA-Seq from High-Definition CT Images.

Genetics research
Bladder cancer has recently seen an alarming increase in global diagnoses, ascending as a predominant cause of cancer-related mortalities. Given this pressing scenario, there is a burgeoning need to identify effective biomarkers for both the diagnosi...

Development and validation of machine learning models and nomograms for predicting the surgical difficulty of laparoscopic resection in rectal cancer.

World journal of surgical oncology
BACKGROUND: The objective of this study is to develop and validate a machine learning (ML) prediction model for the assessment of laparoscopic total mesorectal excision (LaTME) surgery difficulty, as well as to identify independent risk factors that ...

Predictive Model to Identify the Long Time Survivor in Patients with Glioblastoma: A Cohort Study Integrating Machine Learning Algorithms.

Journal of molecular neuroscience : MN
We aimed to develop and validate a predictive model for identifying long-term survivors (LTS) among glioblastoma (GB) patients, defined as those with an overall survival (OS) of more than 3 years. A total of 293 GB patients from CGGA and 169 from TCG...

Ultrasound-Based Deep Learning Radiomics Nomogram for the Assessment of Lymphovascular Invasion in Invasive Breast Cancer: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: The aim of this study was to develop a deep learning radiomics nomogram (DLRN) based on B-mode ultrasound (BMUS) and color doppler flow imaging (CDFI) images for preoperative assessment of lymphovascular invasion (LVI) statu...

Develop and Validate a Nomogram Combining Contrast-Enhanced Spectral Mammography Deep Learning with Clinical-Pathological Features to Predict Neoadjuvant Chemotherapy Response in Patients with ER-Positive/HER2-Negative Breast Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a nomogram that combines contrast-enhanced spectral mammography (CESM) deep learning with clinical-pathological features to predict neoadjuvant chemotherapy (NAC) response (either low Miller Payne (MP...

Machine-learning-based plasma metabolomic profiles for predicting long-term complications of cirrhosis.

Hepatology (Baltimore, Md.)
BACKGROUND AND AIMS: The complications of liver cirrhosis occur after long asymptomatic stages of progressive fibrosis and are generally diagnosed late. We aimed to develop a plasma metabolomic-based score tool to predict these events.