BACKGROUND: Estimation of the risk of malignancy in pulmonary nodules detected by CT is central in clinical management. The use of artificial intelligence (AI) offers an opportunity to improve risk prediction. Here we compare the performance of an AI...
Understanding how cognitive functions emerge from brain structure depends on quantifying how discrete regions are integrated within the broader cortical landscape. Recent work established that macroscale brain organization and function can be describ...
BACKGROUND & AIMS: Narrow-band imaging (NBI) can be used to determine whether colorectal polyps are adenomatous or hyperplastic. We investigated whether an artificial intelligence (AI) system can increase the accuracy of characterizations of polyps b...
Background Radiofrequency ultrasound data from the liver contain rich information about liver microstructure and composition. Deep learning might exploit such information to assess nonalcoholic fatty liver disease (NAFLD). Purpose To develop and eval...
BACKGROUND: Implantable cardiac sensors have shown promise in reducing rehospitalization for heart failure (HF), but the efficacy of noninvasive approaches has not been determined. The objective of this study was to determine the accuracy of noninvas...
Journal of the American Heart Association
Feb 22, 2020
Background Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed to...
OBJECTIVE: Abdominal aortic aneurysm (AAA) is a life-threatening disease, and the only curative treatment relies on open or endovascular repair. The decision to treat relies on the evaluation of the risk of AAA growth and rupture, which can be diffic...
Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
Feb 17, 2020
BACKGROUND: The purpose of this study was to build radiogenomics models from texture signatures derived from computed tomography (CT) and F-FDG PET-CT (FDG PET-CT) images of non-small cell lung cancer (NSCLC) with and without epidermal growth factor ...
BACKGROUND: Epicardial adipose tissue (EAT) volume (cm) and attenuation (Hounsfield units) may predict major adverse cardiovascular events (MACE). We aimed to evaluate the prognostic value of fully automated deep learning-based EAT volume and attenua...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.