AIMC Topic: Predictive Value of Tests

Clear Filters Showing 851 to 860 of 2210 articles

Discrimination of vascular aging using the arterial pulse spectrum and machine-learning analysis.

Microvascular research
Aging contributes to the progression of vascular dysfunction and is a major nonreversible risk factor for cardiovascular disease. The aim of this study was to determine the effectiveness of using arterial pulse-wave measurements, frequency-domain pul...

Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: Multiple studies have compared the performance of artificial intelligence (AI)-based models for automated skin cancer classification to human experts, thus setting the cornerstone for a successful translation of AI-based tools into clinic...

Deep Learning Predicts Interval and Screening-detected Cancer from Screening Mammograms: A Case-Case-Control Study in 6369 Women.

Radiology
Background The ability of deep learning (DL) models to classify women as at risk for either screening mammography-detected or interval cancer (not detected at mammography) has not yet been explored in the literature. Purpose To examine the ability of...

Revisiting performance metrics for prediction with rare outcomes.

Statistical methods in medical research
Machine learning algorithms are increasingly used in the clinical literature, claiming advantages over logistic regression. However, they are generally designed to maximize the area under the receiver operating characteristic curve. While area under ...

A machine-learning-based method to predict adverse events in patients with dilated cardiomyopathy and severely reduced ejection fractions.

The British journal of radiology
OBJECTIVE: Patients with dilated cardiomyopathy (DCM) and severely reduced left ventricular ejection fractions (LVEFs) are at very high risks of experiencing adverse cardiac events. A machine learning (ML) method could enable more effective risk stra...

Uncertainty-Gated Stochastic Sequential Model for EHR Mortality Prediction.

IEEE transactions on neural networks and learning systems
Electronic health records (EHRs) are characterized as nonstationary, heterogeneous, noisy, and sparse data; therefore, it is challenging to learn the regularities or patterns inherent within them. In particular, sparseness caused mostly by many missi...

Exploring the diagnostic effectiveness for myocardial ischaemia based on CCTA myocardial texture features.

BMC cardiovascular disorders
BACKGROUND: To explore the characteristics of myocardial textures on coronary computed tomography angiography (CCTA) images in patients with coronary atherosclerotic heart disease, a classification model was established, and the diagnostic effectiven...