AIMC Topic: Retrospective Studies

Clear Filters Showing 1401 to 1410 of 9539 articles

Comparative efficacy of anteroposterior and lateral X-ray based deep learning in the detection of osteoporotic vertebral compression fracture.

Scientific reports
Magnetic resonance imaging remains the gold standard for diagnosing osteoporotic vertebral compression fractures (OVCF), but the use of X-ray imaging, particularly anteroposterior (AP) and lateral views, is prevalent due to its accessibility and cost...

Artificial intelligence-based drug repurposing with electronic health record clinical corroboration: A case for ketamine as a potential treatment for amphetamine-type stimulant use disorder.

Addiction (Abingdon, England)
BACKGROUND AND AIMS: Amphetamine-type stimulants are the second-most used illicit drugs globally, yet there are no US Food and Drug Administration (FDA)-approved treatments for amphetamine-type stimulant use disorders (ATSUD). The aim of this study w...

Multi-Institutional Evaluation and Training of Breast Density Classification AI Algorithm Using ACR Connect and AI-LAB.

Journal of the American College of Radiology : JACR
OBJECTIVE: To demonstrate and test the capabilities of the ACR Connect and AI-LAB software platform by implementing multi-institutional artificial intelligence (AI) training and validation for breast density classification.

Generalizable Magnetic Resonance Imaging-based Nasopharyngeal Carcinoma Delineation: Bridging Gaps Across Multiple Centers and Raters With Active Learning.

International journal of radiation oncology, biology, physics
PURPOSE: To develop a deep learning method exploiting active learning and source-free domain adaptation for gross tumor volume delineation in nasopharyngeal carcinoma (NPC), addressing the variability and inaccuracy when deploying segmentation models...

An interpretable machine learning scoring tool for estimating time to recurrence readmissions in stroke patients.

International journal of medical informatics
BACKGROUND: Stroke recurrence readmission poses an additional burden on both patients and healthcare systems. Risk stratification aims to accurately divide patients into groups to provide targeted interventions at reducing readmission. To accurately ...

Preoperative prediction of post hepatectomy liver failure after surgery for hepatocellular carcinoma on CT-scan by machine learning and radiomics analyses.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
INTRODUCTION: No instruments are available to predict preoperatively the risk of posthepatectomy liver failure (PHLF) in HCC patients. The aim was to predict the occurrence of PHLF preoperatively by radiomics and clinical data through machine-learnin...

Attention 3D UNET for dose distribution prediction of high-dose-rate brachytherapy of cervical cancer: Intracavitary applicators.

Journal of applied clinical medical physics
BACKGROUND: Formulating a clinically acceptable plan within the time-constrained clinical setting of brachytherapy poses challenges to clinicians. Deep learning based dose prediction methods have shown favorable solutions for enhancing efficiency, bu...

Random Forest Prognostication of Survival and 6-Month Outcome in Pediatric Patients Following Decompressive Craniectomy for Traumatic Brain Injury.

World neurosurgery
BACKGROUND: There is a dearth of literature regarding prognostic and predictive factors for outcome following pediatric decompressive craniectomy (DC) performed after traumatic brain injury (TBI). The aim of this study was to develop a random forest ...

Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective study.

Cardiovascular diabetology
BACKGROUND: Heart failure combined with hypertension is a major contributor for elderly patients (≥ 65 years) to in-hospital mortality. However, there are very few models to predict in-hospital mortality in such elderly patients. We aimed to develop ...

Contrast-enhanced thin-slice abdominal CT with super-resolution deep learning reconstruction technique: evaluation of image quality and visibility of anatomical structures.

Japanese journal of radiology
PURPOSE: To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hy...