The British journal of general practice : the journal of the Royal College of General Practitioners
May 2, 2025
BACKGROUND: The journey of >80% of patients diagnosed with lung cancer starts in general practice. About 75% of patients are diagnosed when it is at an advanced stage (3 or 4), leading to >80% mortality within 1 year at present. The long-term data in...
PURPOSE: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models' capacities t...
PURPOSE: To evaluate the accuracy of ultra-low dose (ULD) chest computed tomography (CT), with a radiation exposure equivalent to a 2-view chest x-ray, for pulmonary nodule detection using deep learning image reconstruction (DLIR).
This study aimed to develop and evaluate a non-invasive XGBoost-based machine learning model using radiomic features extracted from pre-treatment CT images to differentiate grade 4 renal cell carcinoma (RCC) from lower-grade tumours. A total of 102 R...
The Journal of molecular diagnostics : JMD
Apr 29, 2025
Recent studies highlight the promise of blood-based multicancer early detection (MCED) tests for identifying asymptomatic patients with cancer. However, most focus on a single cancer hallmark, thus limiting effectiveness because of cancer's heterogen...
Esophagus : official journal of the Japan Esophageal Society
Apr 28, 2025
BACKGROUND: Detecting pathological complete response (pCR) preoperatively facilitated a non-surgical approach after neoadjuvant chemotherapy (NAC). We previously developed a deep neural network-based endoscopic evaluation to determine pCR preoperativ...
AIM: We aimed to compare the diagnostic performance of physicians in the detection of arthroscopically confirmed meniscus and anterior cruciate ligament (ACL) tears on knee magnetic resonance imaging (MRI), with and without assistance from a deep lea...
In existing breast cancer prediction research, most models rely solely on a single type of imaging data, which limits their performance. To overcome this limitation, the present study explores breast cancer prediction models based on multimodal medic...
BACKGROUND: Cortical morphological abnormalities in schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD) have been identified in past research. However, their potential as objective biomarkers to differentiate these disorde...
AIM: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has proven to be highly sensitive in diagnosing breast tumours, due to the kinetic and volumetric features inherent in it. To utilise the kinetics-related and volume-related informat...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.