AIMC Topic: Staining and Labeling

Clear Filters Showing 101 to 110 of 153 articles

Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.

JAMA network open
IMPORTANCE: Histopathological diagnoses of tumors from tissue biopsy after hematoxylin and eosin (H&E) dye staining is the criterion standard for oncological care, but H&E staining requires trained operators, dyes and reagents, and precious tissue sa...

A machine learning algorithm for simulating immunohistochemistry: development of SOX10 virtual IHC and evaluation on primarily melanocytic neoplasms.

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Immunohistochemistry (IHC) is a diagnostic technique used throughout pathology. A machine learning algorithm that could predict individual cell immunophenotype based on hematoxylin and eosin (H&E) staining would save money, time, and reduce tissue co...

Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches.

International journal of molecular sciences
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection ...

Cellular and Molecular Probing of Intact Human Organs.

Cell
Optical tissue transparency permits scalable cellular and molecular investigation of complex tissues in 3D. Adult human organs are particularly challenging to render transparent because of the accumulation of dense and sturdy molecules in decades-age...

Deep Learning Based on Standard H&E Images of Primary Melanoma Tumors Identifies Patients at Risk for Visceral Recurrence and Death.

Clinical cancer research : an official journal of the American Association for Cancer Research
PURPOSE: Biomarkers for disease-specific survival (DSS) in early-stage melanoma are needed to select patients for adjuvant immunotherapy and accelerate clinical trial design. We present a pathology-based computational method using a deep neural netwo...

Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images.

Medical image analysis
Nuclear segmentation and classification within Haematoxylin & Eosin stained histology images is a fundamental prerequisite in the digital pathology work-flow. The development of automated methods for nuclear segmentation and classification enables th...

RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification.

Medical image analysis
The whole slide histopathology images (WSIs) play a critical role in gastric cancer diagnosis. However, due to the large scale of WSIs and various sizes of the abnormal area, how to select informative regions and analyze them are quite challenging du...

Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology.

Medical image analysis
Stain variation is a phenomenon observed when distinct pathology laboratories stain tissue slides that exhibit similar but not identical color appearance. Due to this color shift between laboratories, convolutional neural networks (CNNs) trained with...

Unsupervised method for normalization of hematoxylin-eosin stain in histological images.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Histological images stained with hematoxylin-eosin are widely used by pathologists for cancer diagnosis. However, these images can have color variations that highly influence the histological image processing techniques. To deal with this potential l...

Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis.

Journal of clinical pathology
AIMS: Morphological differentiation among different blast cell lineages is a difficult task and there is a lack of automated analysers able to recognise these abnormal cells. This study aims to develop a machine learning approach to predict the diagn...