AIMC Topic: Transcriptome

Clear Filters Showing 571 to 580 of 899 articles

Machine-Learning Prediction of Oral Drug-Induced Liver Injury (DILI) via Multiple Features and Endpoints.

BioMed research international
Drug discovery is a costly process which usually takes more than 10 years and billions of dollars for one successful drug to enter the market. Despite all the safety tests, drugs may still cause adverse reactions and be restricted in use or even with...

Database Mining of Genes of Prognostic Value for the Prostate Adenocarcinoma Microenvironment Using the Cancer Gene Atlas.

BioMed research international
BACKGROUND: Prostate adenocarcinoma (PRAD) is a common malignant tumor in elderly men. Our research uses The Cancer Gene Atlas (TCGA) database to find potential related genes for predicting the prognosis of patients with PRAD.

RadAtlas 1.0: a knowledgebase focusing on radiation-associated genes.

International journal of radiation biology
Ionizing radiation has very complex biological effects, such as inducing damage to DNA and proteins, ionizing water molecules to produce toxic free radicals, and triggering genetic and somatic effects. Understanding the biomolecular response mechani...

Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-Seq Data.

Genes
Single-cell RNA-seq (scRNA-seq) is quite prevalent in studying transcriptomes, but it suffers from excessive zeros, some of which are true, but others are false. False zeros, which can be seen as missing data, obstruct the downstream analysis of sing...

Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms.

Biochimica et biophysica acta. Molecular basis of disease
Lung cancer is one of the most common cancer types worldwide and causes more than one million deaths annually. Lung adenocarcinoma (AC) and lung squamous cell cancer (SCC) are two major lung cancer subtypes and have different characteristics in sever...

Fold-Change-Specific Enrichment Analysis (FSEA): Quantification of Transcriptional Response Magnitude for Functional Gene Groups.

Genes
Gene expression profiling data contains more information than is routinely extracted with standard approaches. Here we present Fold-Change-Specific Enrichment Analysis (FSEA), a new method for functional annotation of differentially expressed genes f...

Unveiling new disease, pathway, and gene associations via multi-scale neural network.

PloS one
Diseases involve complex modifications to the cellular machinery. The gene expression profile of the affected cells contains characteristic patterns linked to a disease. Hence, new biological knowledge about a disease can be extracted from these prof...

Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations.

BMC medical genomics
BACKGROUND: Recent advances in kernel-based Deep Learning models have introduced a new era in medical research. Originally designed for pattern recognition and image processing, Deep Learning models are now applied to survival prognosis of cancer pat...

Estimating gene expression from DNA methylation and copy number variation: A deep learning regression model for multi-omics integration.

Genomics
Gene expression analysis plays a significant role for providing molecular insights in cancer. Various genetic and epigenetic factors (being dealt under multi-omics) affect gene expression giving rise to cancer phenotypes. A recent growth in understan...