AI Medical Compendium Journal:
Frontiers in immunology

Showing 31 to 40 of 308 articles

Multimodal diagnostic models and subtype analysis for neoadjuvant therapy in breast cancer.

Frontiers in immunology
BACKGROUND: Breast cancer, a heterogeneous malignancy, comprises multiple subtypes and poses a substantial threat to women's health globally. Neoadjuvant therapy (NAT), administered prior to surgery, is integral to breast cancer treatment strategies....

Identification of prognostic subtypes and the role of FXYD6 in ovarian cancer through multi-omics clustering.

Frontiers in immunology
BACKGROUND: Ovarian cancer (OC), as a malignant tumor that seriously endangers the lives and health of women, is renowned for its complex tumor heterogeneity. Multi-omics analysis, as an effective method for distinguishing tumor heterogeneity, can mo...

Multimodal deep learning for predicting PD-L1 biomarker and clinical immunotherapy outcomes of esophageal cancer.

Frontiers in immunology
Although the immune checkpoint inhibitors (ICIs) have demonstrated remarkable anti-tumor efficacy in solid tumors, the proportion of ESCC patients who benefit from ICIs remains limited. Current biomarkers have assisted in identifying potential respon...

Comprehensive integration of diagnostic biomarker analysis and immune cell infiltration features in sepsis via machine learning and bioinformatics techniques.

Frontiers in immunology
INTRODUCTION: Sepsis, a critical medical condition resulting from an irregular immune response to infection, leads to life-threatening organ dysfunction. Despite medical advancements, the critical need for research into dependable diagnostic markers ...

Interpretable machine learning model for early morbidity risk prediction in patients with sepsis-induced coagulopathy: a multi-center study.

Frontiers in immunology
BACKGROUND: Sepsis-induced coagulopathy (SIC) is a complex condition characterized by systemic inflammation and coagulopathy. This study aimed to develop and validate a machine learning (ML) model to predict SIC risk in patients with sepsis.

OnmiMHC: a machine learning solution for UCEC tumor vaccine development through enhanced peptide-MHC binding prediction.

Frontiers in immunology
The key roles of Major Histocompatibility Complex (MHC) Class I and II molecules in the immune system are well established. This study aims to develop a novel machine learning framework for predicting antigen peptide presentation by MHC Class I and I...

Identify the potential target of efferocytosis in knee osteoarthritis synovial tissue: a bioinformatics and machine learning-based study.

Frontiers in immunology
INTRODUCTION: Knee osteoarthritis (KOA) is a degenerative joint disease characterized by the progressive deterioration of cartilage and synovial inflammation. A critical mechanism in the pathogenesis of KOA is impaired efferocytosis in synovial tissu...

Development of a tertiary lymphoid structure-based prognostic model for breast cancer: integrating single-cell sequencing and machine learning to enhance patient outcomes.

Frontiers in immunology
BACKGROUND: Breast cancer, a highly prevalent global cancer, poses significant challenges, especially in advanced stages. Prognostic models are crucial to enhance patient outcomes. Tertiary lymphoid structures (TLS) within the tumor microenvironment ...