The composition and relative abundances of immune cells in the tumor microenvironment are key factors affecting the progression of lung adenocarcinomas (LUADs) and the efficacy of immunotherapy. Using the cancer gene expression dataset from The Cance...
BACKGROUND: The small number of samples and the curse of dimensionality hamper the better application of deep learning techniques for disease classification. Additionally, the performance of clustering-based feature selection algorithms is still far ...
Computational and mathematical methods in medicine
Aug 1, 2020
BACKGROUND: The differential diagnosis of subcentimetre lung nodules with a diameter of less than 1 cm has always been one of the problems of imaging doctors and thoracic surgeons. We plan to create a deep learning model for the diagnosis of pulmonar...
Early cancer detection greatly increases the chances for successful treatment, but available diagnostics for some tumours, including lung adenocarcinoma (LA), are limited. An ideal early-stage diagnosis of LA for large-scale clinical use must address...
OBJECTIVES: To evaluate the differential diagnostic performance of a computed tomography (CT)-based deep learning nomogram (DLN) in identifying tuberculous granuloma (TBG) and lung adenocarcinoma (LAC) presenting as solitary solid pulmonary nodules (...
PURPOSE: Adenocarcinoma (ADC) is the most common histological subtype of lung cancers in non-small cell lung cancer (NSCLC) in which ground glass opacifications (GGOs) found on computed tomography (CT) scans are the most common lesions. However, the ...
Biochimica et biophysica acta. Molecular basis of disease
Apr 28, 2020
Lung cancer is one of the most common cancer types worldwide and causes more than one million deaths annually. Lung adenocarcinoma (AC) and lung squamous cell cancer (SCC) are two major lung cancer subtypes and have different characteristics in sever...
OBJECTIVES: The evaluation of lymph node (LN) status by radiologists based on preoperative computed tomography (CT) lacks high precision for early lung cancer patients; erroneous evaluations result in inappropriate therapeutic plans and increase the ...
BACKGROUND: IBM Watson for Oncology (WFO) provides physicians with evidence-based treatment options. This study was designed to explore the concordance of the suggested therapeutic regimen for advanced non-small cell lung (NSCLC) cancer patients betw...
PURPOSE: Spread through air space (STAS) is a novel invasive pattern of lung adenocarcinoma and is also a risk factor for recurrence and worse prognosis of lung adenocarcinoma. The aims of this study are to develop and validate a computed tomography ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.