AIMC Topic: Age of Onset

Clear Filters Showing 11 to 20 of 32 articles

Development and validation of a new diabetes index for the risk classification of present and new-onset diabetes: multicohort study.

Scientific reports
In this study, we aimed to propose a novel diabetes index for the risk classification based on machine learning techniques with a high accuracy for diabetes mellitus. Upon analyzing their demographic and biochemical data, we classified the 2013-16 Ko...

Data-driven approaches to advance research and clinical care for pediatric cancer.

Biochimica et biophysica acta. Reviews on cancer
Pediatric cancer is a rare disease with a distinct etiology and mutational landscape compared with adult cancer. Multi-omics profiling of retrospective and prospective cohorts coupled with innovative computational analysis have been instrumental in u...

Identification of prognostic factors for pediatric myocarditis with a random forests algorithm-assisted approach.

Pediatric research
BACKGROUND: Pediatric myocarditis is a rare disease with substantial mortality. Little is known regarding its prognostic factors. We hypothesize that certain comorbidities and procedural needs may increase risks of poor outcomes. This study aims to i...

Prediction of lithium response using clinical data.

Acta psychiatrica Scandinavica
OBJECTIVE: Promptly establishing maintenance therapy could reduce morbidity and mortality in patients with bipolar disorder. Using a machine learning approach, we sought to evaluate whether lithium responsiveness (LR) is predictable using clinical ma...

Machine-learning-derived rules set excludes risk of Parkinson's disease in patients with olfactory or gustatory symptoms with high accuracy.

Journal of neurology
BACKGROUND: Chemosensory loss is a symptom of Parkinson's disease starting already at preclinical stages. Their appearance without an identifiable etiology therefore indicates a possible early symptom of Parkinson's disease. Supervised machine-learni...

Impact of age at onset on the phenomenology of depression in treatment-seeking adults in the STAR*D trial.

Journal of affective disorders
BACKGROUND: - Adolescence is characterized by biological, emotional, and behavioral changes. The onset of depression during this vulnerable time may confer specific risks. This study examined whether symptoms of depression were associated with age at...

Prediction model development of late-onset preeclampsia using machine learning-based methods.

PloS one
Preeclampsia is one of the leading causes of maternal and fetal morbidity and mortality. Due to the lack of effective preventive measures, its prediction is essential to its prompt management. This study aimed to develop models using machine learning...