AIMC Topic: Aged

Clear Filters Showing 1061 to 1070 of 12524 articles

Super-resolution deep learning reconstruction for improved quality of myocardial CT late enhancement.

Japanese journal of radiology
PURPOSE: Myocardial computed tomography (CT) late enhancement (LE) allows assessment of myocardial scarring. Super-resolution deep learning image reconstruction (SR-DLR) trained on data acquired from ultra-high-resolution CT may improve image quality...

Diagnostic Accuracy of a Deep Learning Algorithm for Detecting Unruptured Intracranial Aneurysms in Magnetic Resonance Angiography: A Multicenter Pivotal Trial.

World neurosurgery
BACKGROUND: Intracranial aneurysm rupture is associated with high mortality and disability rates. Early detection is crucial, but increasing diagnostic workloads place significant strain on radiologists. We evaluated the efficacy of a deep learning a...

Machine learning prediction of overall survival in prostate adenocarcinoma using ensemble techniques.

Computers in biology and medicine
Prostate adenocarcinoma (PAC) is a complex and common cancer in males and is one of the leading causes of cancer-related death globally. PAC is a multifaceted disease that encompasses different subtypes, including acinar and ductal adenocarcinoma, sm...

Real-Time Acoustic Scene Recognition for Elderly Daily Routines Using Edge-Based Deep Learning.

Sensors (Basel, Switzerland)
The demand for intelligent monitoring systems tailored to elderly living environments is rapidly increasing worldwide with population aging. Traditional acoustic scene monitoring systems that rely on cloud computing are limited by data transmission d...

An interpretable machine learning model based on computed tomography radiomics for predicting programmed death ligand 1 expression status in gastric cancer.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Programmed death ligand 1 (PD-L1) expression status, closely related to immunotherapy outcomes, is a reliable biomarker for screening patients who may benefit from immunotherapy. Here, we developed and validated an interpretable machine l...

Predicting total healthcare demand using machine learning: separate and combined analysis of predisposing, enabling, and need factors.

BMC health services research
OBJECTIVE: Predicting healthcare demand is essential for effective resource allocation and planning. This study applies Andersen's Behavioral Model of Health Services Use, focusing on predisposing, enabling, and need factors, using data from the 2022...

Deep learning radiomics for the prediction of epidermal growth factor receptor mutation status based on MRI in brain metastasis from lung adenocarcinoma patients.

BMC cancer
BACKGROUND: Early and accurate identification of epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients with brain metastases is critical for guiding targeted therapy. This study aimed to develop a deep...

Development and validation of machine learning models for predicting extubation failure in patients undergoing cardiac surgery: a retrospective study.

Scientific reports
Patients with multiple comorbidities and those undergoing complex cardiac surgery may experience extubation failure and reintubation. The aim of this study was to establish an extubation prediction model using explainable machine learning and identif...

Machine learning analysis of integrated ABP and PPG signals towards early detection of coronary artery disease.

Scientific reports
Every year, Coronary Artery Disease (CAD) claims lives of over a million people. CAD occurs when the coronary arteries, responsible for supplying oxygenated blood to the heart, get occluded due to plaque deposits on their inner walls. The most critic...

Assessing Total Hip Arthroplasty Outcomes and Generating an Orthopedic Research Outcome Database via a Natural Language Processing Pipeline: Development and Validation Study.

JMIR medical informatics
BACKGROUND: Processing data from electronic health records (EHRs) to build research-grade databases is a lengthy and expensive process. Modern arthroplasty practice commonly uses multiple sites of care, including clinics and ambulatory care centers. ...