AIMC Topic: Aged

Clear Filters Showing 701 to 710 of 12515 articles

Identification of Patients With Congestive Heart Failure From the Electronic Health Records of Two Hospitals: Retrospective Study.

JMIR medical informatics
BACKGROUND: Congestive heart failure (CHF) is a common cause of hospital admissions. Medical records contain valuable information about CHF, but manual chart review is time-consuming. Claims databases (using International Classification of Diseases [...

The Association of Elevated Depression Levels and Life's Essential 8 on Cardiovascular Health With Predicted Machine Learning Models and Interpretations: Evidence From NHANES 2007-2018.

Depression and anxiety
The association between depression severity and cardiovascular health (CVH) represented by Life's Essential 8 (LE8) was analyzed, with a novel focus on ranked levels and different ages. Machine learning (ML) algorithms were also selected aimed at pr...

Habitat Radiomics Based on MRI for Predicting Metachronous Liver Metastasis in Locally Advanced Rectal Cancer: a Two‑center Study.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to explore the feasibility of using habitat radiomics based on magnetic resonance imaging (MRI) to predict metachronous liver metastasis (MLM) in locally advanced rectal cancer (LARC) patients. A nomogram wa...

Prediction of outpatient visits for allergic rhinitis using an artificial intelligence LSTM model - a study in Eastern China.

BMC public health
BACKGROUND: Allergic rhinitis is a common disease that can affect the health of patients and bring huge social and economic burdens. In this study, we developed a model to predict the incidence rate of allergic rhinitis so as to provide accurate info...

The Role of ChatGPT in osteoporosis management: a comparative analysis with clinical expertise.

Archives of osteoporosis
UNLABELLED: This study evaluates the role of ChatGPT in osteoporosis management, demonstrating 91% diagnostic accuracy and significantly faster response times compared to clinicians. The findings highlight the potential for artificial intelligence (A...

Novel deep learning algorithm based MRI radiomics for predicting lymph node metastases in rectal cancer.

Scientific reports
To explore the value of applying the MRI-based radiomic nomogram for predicting lymph node metastasis (LNM) in rectal cancer (RC). This retrospective analysis used data from 430 patients with RC from two medical centers. The patients were categorized...

Voice biomarkers as prognostic indicators for Parkinson's disease using machine learning techniques.

Scientific reports
Many people suffer from Parkinson's disease globally, a complicated neurological condition caused by the deficiency of dopamine, an organic chemical responsible for regulating movement in individuals. Patients with Parkinson face muscle stiffness or ...

A Risk Prediction Model (CMC-AKIX) for Postoperative Acute Kidney Injury Using Machine Learning: Algorithm Development and Validation.

Journal of medical Internet research
BACKGROUND: Postoperative acute kidney injury (AKI) is a significant risk associated with surgeries under general anesthesia, often leading to increased mortality and morbidity. Existing predictive models for postoperative AKI are usually limited to ...

Developing a Machine Learning Model for Predicting 30-Day Major Adverse Cardiac and Cerebrovascular Events in Patients Undergoing Noncardiac Surgery: Retrospective Study.

Journal of medical Internet research
BACKGROUND: Considering that most patients with low or no significant risk factors can safely undergo noncardiac surgery without additional cardiac evaluation, and given the excessive evaluations often performed in patients undergoing intermediate or...