AIMC Topic: Benchmarking

Clear Filters Showing 281 to 290 of 462 articles

A multi-phase deep CNN based mitosis detection framework for breast cancer histopathological images.

Scientific reports
The mitotic activity index is a key prognostic measure in tumour grading. Microscopy based detection of mitotic nuclei is a significant overhead and necessitates automation. This work proposes deep CNN based multi-phase mitosis detection framework "M...

Validation of the Artificial Intelligence-Based Predictive Optimal Trees in Emergency Surgery Risk (POTTER) Calculator in Emergency General Surgery and Emergency Laparotomy Patients.

Journal of the American College of Surgeons
BACKGROUND: The Predictive Optimal Trees in Emergency Surgery Risk (POTTER) tool is an artificial intelligence-based calculator for the prediction of 30-day outcomes in patients undergoing emergency operations. In this study, we sought to assess the ...

Accurate surface ultraviolet radiation forecasting for clinical applications with deep neural network.

Scientific reports
Exposure to appropriate doses of UV radiation provides enormously health and medical treatment benefits including psoriasis. Typical hospital-based phototherapy cabinets contain a bunch of artificial lamps, either broad-band (main emission spectrum 2...

Exploring the Relationship Between EMG Feature Space Characteristics and Control Performance in Machine Learning Myoelectric Control.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
In myoelectric machine learning (ML) based control, it has been demonstrated that control performance usually increases with training, but it remains largely unknown which underlying factors govern these improvements. It has been suggested that the i...

Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction.

Proteins
Deep learning has emerged as a revolutionary technology for protein residue-residue contact prediction since the 2012 CASP10 competition. Considerable advancements in the predictive power of the deep learning-based contact predictions have been achie...

Fast and precise single-cell data analysis using a hierarchical autoencoder.

Nature communications
A primary challenge in single-cell RNA sequencing (scRNA-seq) studies comes from the massive amount of data and the excess noise level. To address this challenge, we introduce an analysis framework, named single-cell Decomposition using Hierarchical ...

Toward data-efficient learning: A benchmark for COVID-19 CT lung and infection segmentation.

Medical physics
PURPOSE: Accurate segmentation of lung and infection in COVID-19 computed tomography (CT) scans plays an important role in the quantitative management of patients. Most of the existing studies are based on large and private annotated datasets that ar...

Task Similarity Estimation Through Adversarial Multitask Neural Network.

IEEE transactions on neural networks and learning systems
Multitask learning (MTL) aims at solving the related tasks simultaneously by exploiting shared knowledge to improve performance on individual tasks. Though numerous empirical results supported the notion that such shared knowledge among tasks plays a...

Deep Learning for Multigrade Brain Tumor Classification in Smart Healthcare Systems: A Prospective Survey.

IEEE transactions on neural networks and learning systems
Brain tumor is one of the most dangerous cancers in people of all ages, and its grade recognition is a challenging problem for radiologists in health monitoring and automated diagnosis. Recently, numerous methods based on deep learning have been pres...

Deep Coattention-Based Comparator for Relative Representation Learning in Person Re-Identification.

IEEE transactions on neural networks and learning systems
Person re-identification (re-ID) favors discriminative representations over unseen shots to recognize identities in disjoint camera views. Effective methods are developed via pair-wise similarity learning to detect a fixed set of region features, whi...