AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biomarkers

Showing 31 to 40 of 1625 articles

Clear Filters

Advancement in early diagnosis of polycystic ovary syndrome: biomarker-driven innovative diagnostic sensor.

Mikrochimica acta
Polycystic ovary syndrome (PCOS) is a heterogeneous multifactorial endocrine disorder that affects one in five women around the globe. The pathology suggests a strong polygenic and epigenetic correlation, along with hormonal and metabolic dysfunction...

Automated extraction of functional biomarkers of verbal and ambulatory ability from multi-institutional clinical notes using large language models.

Journal of neurodevelopmental disorders
BACKGROUND: Functional biomarkers in neurodevelopmental disorders, such as verbal and ambulatory abilities, are essential for clinical care and research activities. Treatment planning, intervention monitoring, and identifying comorbid conditions in i...

Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.

Frontiers in public health
BACKGROUND: Exposure to heavy metals has been implicated in adverse auditory health outcomes, yet the precise relationships between heavy metal biomarkers and hearing status remain underexplored. This study leverages a machine learning framework to i...

Identification of aging-related biomarkers for intervertebral disc degeneration in whole blood samples based on bioinformatics and machine learning.

Frontiers in immunology
INTRODUCTION: Aging is characterized by gradual structural and functional changes in the body over time, with intervertebral disc degeneration (IVDD) representing a key manifestation of spinal aging and a major contributor to low back pain (LBP).

Classification of Neuropsychiatric Disorders via Brain-Region-Selected Graph Convolutional Network.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
For the classification of patients with neuropsychiatric disorders based on rs-fMRI data, this paper proposed a Brain-Region-Selected graph convolutional network (BRS-GCN). In order to effectively identify the most significant biomarkers associated w...

Identification of novel metabolism-related biomarkers of Kawasaki disease by integrating single-cell RNA sequencing analysis and machine learning algorithms.

Frontiers in immunology
BACKGROUND: The bile acid metabolism (BAM) and fatty acid metabolism (FAM) have been implicated in Kawasaki disease (KD), but their precise mechanisms remain unclear. Identifying signature cells and genes related to BAM and FAM could offer a deeper u...

Tlalpan 2020 Case Study: Enhancing Uric Acid Level Prediction with Machine Learning Regression and Cross-Feature Selection.

Nutrients
Uric acid is a key metabolic byproduct of purine degradation and plays a dual role in human health. At physiological levels, it acts as an antioxidant, protecting against oxidative stress. However, excessive uric acid can lead to hyperuricemia, cont...

Using Machine Learning to Predict Cognitive Decline in Older Adults From the Chinese Longitudinal Healthy Longevity Survey: Model Development and Validation Study.

JMIR aging
BACKGROUND: Cognitive impairment, indicative of Alzheimer disease and other forms of dementia, significantly deteriorates the quality of life of older adult populations and imposes considerable burdens on families and health care systems worldwide. T...

Discovering Novel Biomarkers and Potential Therapeutic Targets of Amyotrophic Lateral Sclerosis Through Integrated Machine Learning and Gene Expression Profiling.

Journal of molecular neuroscience : MN
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has multiple factors that make its molecular pathogenesis difficult to understand and its diagnosis and treatment during the early stages difficult to determine. Dis...