AIMC Topic: Case-Control Studies

Clear Filters Showing 141 to 150 of 871 articles

Machine learning with multiple modalities of brain magnetic resonance imaging data to identify the presence of bipolar disorder.

Journal of affective disorders
BACKGROUND: Bipolar disorder (BD) is a chronic psychiatric mood disorder that is solely diagnosed based on clinical symptoms. These symptoms often overlap with other psychiatric disorders. Efforts to use machine learning (ML) to create predictive mod...

Disease prediction with multi-omics and biomarkers empowers case-control genetic discoveries in the UK Biobank.

Nature genetics
The emergence of biobank-level datasets offers new opportunities to discover novel biomarkers and develop predictive algorithms for human disease. Here, we present an ensemble machine-learning framework (machine learning with phenotype associations, ...

Aging-related biomarkers for the diagnosis of Parkinson's disease based on bioinformatics analysis and machine learning.

Aging
Parkinson's disease (PD) is a multifactorial disease that lacks reliable biomarkers for its diagnosis. It is now clear that aging is the greatest risk factor for developing PD. Therefore, it is necessary to identify novel biomarkers associated with a...

Machine learning-based model for worsening heart failure risk in Chinese chronic heart failure patients.

ESC heart failure
AIMS: This study aims to develop and validate an optimal model for predicting worsening heart failure (WHF). Multiple machine learning (ML) algorithms were compared, and the results were interpreted using SHapley Additive exPlanations (SHAP). A clini...

Accelerated chemical shift encoded cardiovascular magnetic resonance imaging with use of a resolution enhancement network.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: Cardiovascular magnetic resonance (CMR) chemical shift encoding (CSE) enables myocardial fat imaging. We sought to develop a deep learning network (fast chemical shift encoding [FastCSE]) to accelerate CSE.

Impact of acquisition area on deep-learning-based glaucoma detection in different plexuses in OCTA.

Scientific reports
Glaucoma is a group of neurodegenerative diseases that can lead to irreversible blindness. Yet, the progression can be slowed down if diagnosed and treated early enough. Optical coherence tomography angiography (OCTA) can non-invasively provide valua...

Machine learning techniques to identify risk factors of breast cancer among women in Mashhad, Iran.

Journal of preventive medicine and hygiene
BACKGROUND: Low survival rates of breast cancer in developing countries are mainly due to the lack of early detection plans and adequate diagnosis and treatment facilities.

Salivary Molecular Spectroscopy with Machine Learning Algorithms for a Diagnostic Triage for Amelogenesis Imperfecta.

International journal of molecular sciences
Amelogenesis imperfecta (AI) is a genetic disease characterized by poor formation of tooth enamel. AI occurs due to mutations, especially in AMEL, ENAM, KLK4, MMP20, and FAM83H, associated with changes in matrix proteins, matrix proteases, cell-matri...

Uncovering early predictors of cerebral palsy through the application of machine learning: a case-control study.

BMJ paediatrics open
OBJECTIVE: Cerebral palsy (CP) is a group of neurological disorders with profound implications for children's development. The identification of perinatal risk factors for CP may lead to improved preventive and therapeutic strategies. This study aime...

Identification of immune-related biomarkers for intracerebral hemorrhage diagnosis based on RNA sequencing and machine learning.

Frontiers in immunology
BACKGROUND: Intracerebral hemorrhage (ICH) is a severe stroke subtype with high morbidity, disability, and mortality rates. Currently, no biomarkers for ICH are available for use in clinical practice. We aimed to explore the roles of RNAs in ICH path...