AIMC Topic: Case-Control Studies

Clear Filters Showing 171 to 180 of 871 articles

Using natural language processing to evaluate temporal patterns in suicide risk variation among high-risk Veterans.

Psychiatry research
Measuring suicide risk fluctuation remains difficult, especially for high-suicide risk patients. Our study addressed this issue by leveraging Dynamic Topic Modeling, a natural language processing method that evaluates topic changes over time, to anal...

Reduced response to regadenoson with increased weight: An artificial intelligence-based quantitative myocardial perfusion study.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: There is conflicting evidence regarding the response to a fixed dose of regadenoson in patients with high body weight. The aim of this study was to evaluate the effectiveness of regadenoson in patients with varying body weights using nove...

Machine learning computational model to predict lung cancer using electronic medical records.

Cancer epidemiology
BACKGROUND: Lung cancer (LC) screening using low-dose computed tomography (CT) is recommended according to standard risk criteria or personalized risk calculators. Machine learning (ML) models that can predict disease risk are an emerging method in m...

Causes of death in individuals with lifetime major depression: a comprehensive machine learning analysis from a community-based autopsy center.

BMC psychiatry
BACKGROUND: Depression can be associated with increased mortality and morbidity, but no studies have investigated the specific causes of death based on autopsy reports. Autopsy studies can yield valuable and detailed information on pathological ailme...

Machine learning-enhanced HRCT analysis for diagnosis and severity assessment in pediatric asthma.

Pediatric pulmonology
OBJECTIVES: Chest high-resolution computed tomography (HRCT) is conditionally recommended to rule out conditions that mimic or coexist with severe asthma in children. However, it may provide valuable insights into identifying structural airway change...

Plasma-based near-infrared spectroscopy for early diagnosis of lung cancer.

Journal of pharmaceutical and biomedical analysis
Lung cancer (LC) continues to be a leading death cause in China, primarily due to late diagnosis. This study aimed to evaluate the effectiveness of using plasma-based near-infrared spectroscopy (NIRS) for LC early diagnosis. A total of 171 plasma sam...

Self-organizing maps for exploration and classification of nuclear magnetic resonance spectra for untargeted metabolomics of breast cancer.

Journal of pharmaceutical and biomedical analysis
Metabolomics has emerged as a powerful tool for identifying biomarkers of disease, and nuclear magnetic resonance (NMR) spectroscopy allows for the simultaneous detection of a wide range of metabolites. However, due to complex interactions within met...

Detecting outliers in case-control cohorts for improving deep learning networks on Schizophrenia prediction.

Journal of integrative bioinformatics
This study delves into the intricate genetic and clinical aspects of Schizophrenia, a complex mental disorder with uncertain etiology. Deep Learning (DL) holds promise for analyzing large genomic datasets to uncover new risk factors. However, based o...

Speech-based recognition and estimating severity of PTSD using machine learning.

Journal of affective disorders
BACKGROUND: Traditional methodologies for diagnosing post-traumatic stress disorder (PTSD) primarily rely on interviews, incurring considerable costs and lacking objective indices. Integrating biomarkers and machine learning techniques into this diag...