AIMC Topic: Case-Control Studies

Clear Filters Showing 321 to 330 of 872 articles

Global processing provides malignancy evidence complementary to the information captured by humans or machines following detailed mammogram inspection.

Scientific reports
The information captured by the gist signal, which refers to radiologists' first impression arising from an initial global image processing, is poorly understood. We examined whether the gist signal can provide complementary information to data captu...

A machine learning model to predict critical care outcomes in patient with chest pain visiting the emergency department.

BMC emergency medicine
BACKGROUND: Currently, the risk stratification of critically ill patient with chest pain is a challenge. We aimed to use machine learning approach to predict the critical care outcomes in patients with chest pain, and simultaneously compare its perfo...

Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network.

Computational and mathematical methods in medicine
Alzheimer's disease (AD) is one of the most important causes of mortality in elderly people, and it is often challenging to use traditional manual procedures when diagnosing a disease in the early stages. The successful implementation of machine lear...

Artificial intelligence application versus physical therapist for squat evaluation: a randomized controlled trial.

Scientific reports
Artificial intelligence technology is becoming more prevalent in health care as a tool to improve practice patterns and patient outcomes. This study assessed ability of a commercialized artificial intelligence (AI) mobile application to identify and ...

Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears.

Leukemia
The evaluation of bone marrow morphology by experienced hematopathologists is essential in the diagnosis of acute myeloid leukemia (AML); however, it suffers from a lack of standardization and inter-observer variability. Deep learning (DL) can proces...

Deep Learning Predicts Interval and Screening-detected Cancer from Screening Mammograms: A Case-Case-Control Study in 6369 Women.

Radiology
Background The ability of deep learning (DL) models to classify women as at risk for either screening mammography-detected or interval cancer (not detected at mammography) has not yet been explored in the literature. Purpose To examine the ability of...

Detection of sarcopenic obesity and prediction of long-term survival in patients with gastric cancer using preoperative computed tomography and machine learning.

Journal of surgical oncology
BACKGROUND: Previous studies evaluating the prognostic value of computed tomography (CT)-derived body composition data have included few patients. Thus, we assessed the prevalence and prognostic value of sarcopenic obesity in a large population of ga...

Risk prediction of diabetic nephropathy using machine learning techniques: A pilot study with secondary data.

Diabetes & metabolic syndrome
AIMS: This research work presented a comparative study of machine learning (ML), including two objectives: (i) determination of the risk factors of diabetic nephropathy (DN) based on principal component analysis (PCA) via different cutoffs; (ii) pred...

An approach to rapidly assess sepsis through multi-biomarker host response using machine learning algorithm.

Scientific reports
Sepsis is a life-threatening condition and understanding the disease pathophysiology through the use of host immune response biomarkers is critical for patient stratification. Lack of accurate sepsis endotyping impedes clinicians from making timely d...