AIMC Topic: Case-Control Studies

Clear Filters Showing 461 to 470 of 872 articles

Improvement of classification performance of Parkinson's disease using shape features for machine learning on dopamine transporter single photon emission computed tomography.

PloS one
OBJECTIVE: To assess the classification performance between Parkinson's disease (PD) and normal control (NC) when semi-quantitative indicators and shape features obtained on dopamine transporter (DAT) single photon emission computed tomography (SPECT...

A Novel Deep Learning Approach with a 3D Convolutional Ladder Network for Differential Diagnosis of Idiopathic Normal Pressure Hydrocephalus and Alzheimer's Disease.

Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
PURPOSE: Idiopathic normal pressure hydrocephalus (iNPH) and Alzheimer's disease (AD) are geriatric diseases and common causes of dementia. Recently, many studies on the segmentation, disease detection, or classification of MRI using deep learning ha...

Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study.

The lancet. Gastroenterology & hepatology
BACKGROUND: Colonoscopy with computer-aided detection (CADe) has been shown in non-blinded trials to improve detection of colon polyps and adenomas by providing visual alarms during the procedure. We aimed to assess the effectiveness of a CADe system...

Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: Deep learning convolutional neural networks (CNNs) show great potential for melanoma diagnosis. Melanoma thickness at diagnosis amongĀ others depends on melanoma localisation and subtype (e.g. advanced thickness in acrolentiginous or nodul...

Deep learning-based automated speech detection as a marker of social functioning in late-life depression.

Psychological medicine
BACKGROUND: Late-life depression (LLD) is associated with poor social functioning. However, previous research uses bias-prone self-report scales to measure social functioning and a more objective measure is lacking. We tested a novel wearable device ...

Preliminary experience with an image-free handheld robot for total knee arthroplasty: 77 cases compared with a matched control group.

European journal of orthopaedic surgery & traumatology : orthopedie traumatologie
BACKGROUND: Achieving an optimal limb alignment is an important factor affecting the long-term survival of total knee arthroplasty (TKA). This is the first study to look at the limb alignment and orientation of components in TKA using a novel image-f...

Quantification of Retinal Nerve Fibre Layer Thickness on Optical Coherence Tomography with a Deep Learning Segmentation-Free Approach.

Scientific reports
This study describes a segmentation-free deep learning (DL) algorithm for measuring retinal nerve fibre layer (RNFL) thickness on spectral-domain optical coherence tomography (SDOCT). The study included 25,285 B-scans from 1,338 eyes of 706 subjects....

Deep learning, computer-aided radiography reading for tuberculosis: a diagnostic accuracy study from a tertiary hospital in India.

Scientific reports
In general, chest radiographs (CXR) have high sensitivity and moderate specificity for active pulmonary tuberculosis (PTB) screening when interpreted by human readers. However, they are challenging to scale due to hardware costs and the dearth of pro...

A practical model for the identification of congenital cataracts using machine learning.

EBioMedicine
BACKGROUND: Approximately 1 in 33 newborns is affected by congenital anomalies worldwide. We aimed to develop a practical model for identifying infants with a high risk of congenital cataracts (CCs), which is the leading cause of avoidable childhood ...

Application of Machine Learning for Predicting Clinically Meaningful Outcome After Arthroscopic Femoroacetabular Impingement Surgery.

The American journal of sports medicine
BACKGROUND: Hip arthroscopy has become an important tool for surgical treatment of intra-articular hip pathology. Predictive models for clinically meaningful outcomes in patients undergoing hip arthroscopy for femoroacetabular impingement syndrome (F...