Purpose To investigate diagnostic performance by using a deep learning method with a convolutional neural network (CNN) for the differentiation of liver masses at dynamic contrast agent-enhanced computed tomography (CT). Materials and Methods This cl...
OBJECTIVE The current diagnostic criterion for Chiari malformation Type I (CM-I), based on tonsillar herniation (TH), includes a diversity of patients with amygdalar descent that may be caused by a variety of factors. In contrast, patients presenting...
BACKGROUND: Fine-needle aspiration (FNA) biopsy is an accurate method for the diagnosis of solid pancreatic masses. However, a significant number of cases still pose a diagnostic challenge. The authors have attempted to design a computer model to aid...
We present a computer-aided diagnosis system (CADx) for the automatic categorization of solid, part-solid and non-solid nodules in pulmonary computerized tomography images using a Convolutional Neural Network (CNN). Provided with only a two-dimension...
Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) together affect >10% of the children in the United States, but considerable behavioral overlaps between the two disorders can often complicate differential diagnosis. ...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
May 5, 2017
This paper presents a deep-learning-based CADx for the differential diagnosis of embryonal (ERMS) and alveolar (ARMS) subtypes of rhabdomysarcoma (RMS) solely by analyzing multiparametric MR images. We formulated an automated pipeline that creates a ...
AJNR. American journal of neuroradiology
Apr 27, 2017
BACKGROUND AND PURPOSE: Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purp...
Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
Mar 24, 2017
BACKGROUND AND AIM: This study aims to examine the distinguishability of age-related cognitive decline (ARCD) from dementias based on some neurocognitive tests using machine learning.
This paper presents a brain T1-weighted structural magnetic resonance imaging (MRI) biomarker that combines several individual MRI biomarkers (cortical thickness measurements, volumetric measurements, hippocampal shape, and hippocampal texture). The ...
Distinguishing between accidental and abusive head trauma in children can be difficult, as there is a lack of baseline data for pediatric cranial fracture patterns. A porcine head model has recently been developed and utilized in a series of studies ...