AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Disease Progression

Showing 381 to 390 of 704 articles

Clear Filters

Determinants of Cone and Rod Functions in Geographic Atrophy: AI-Based Structure-Function Correlation.

American journal of ophthalmology
PURPOSE: To investigate the association between retinal microstructure and cone and rod function in geographic atrophy (GA) secondary to age-related macular degeneration (AMD) by using artificial intelligence (AI) algorithms.

Role of Deep Learning-Quantified Hyperreflective Foci for the Prediction of Geographic Atrophy Progression.

American journal of ophthalmology
PURPOSE: To quantitatively measure hyperreflective foci (HRF) during the progression of geographic atrophy (GA) secondary to age-related macular degeneration (AMD) using deep learning (DL) and investigate the association with local and global growth ...

PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers.

European radiology experimental
PRIMAGE is one of the largest and more ambitious research projects dealing with medical imaging, artificial intelligence and cancer treatment in children. It is a 4-year European Commission-financed project that has 16 European partners in the consor...

Scalable diagnostic screening of mild cognitive impairment using AI dialogue agent.

Scientific reports
The search for early biomarkers of mild cognitive impairment (MCI) has been central to the Alzheimer's Disease (AD) and dementia research community in recent years. To identify MCI status at the earliest possible point, recent studies have shown that...

Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis.

BMC neurology
BACKGROUND: Evoked potentials (EPs) are a measure of the conductivity of the central nervous system. They are used to monitor disease progression of multiple sclerosis patients. Previous studies only extracted a few variables from the EPs, which are ...

Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics.

Clinical cancer research : an official journal of the American Association for Cancer Research
PURPOSE: Using standard-of-care CT images obtained from patients with a diagnosis of non-small cell lung cancer (NSCLC), we defined radiomics signatures predicting the sensitivity of tumors to nivolumab, docetaxel, and gefitinib.

Interpatient Similarities in Cardiac Function: A Platform for Personalized Cardiovascular Medicine.

JACC. Cardiovascular imaging
OBJECTIVES: The authors applied unsupervised machine-learning techniques for integrating echocardiographic features of left ventricular (LV) structure and function into a patient similarity network that predicted major adverse cardiac event(s) (MACE)...

Diabetic retinopathy and ultrawide field imaging.

Seminars in ophthalmology
The introduction of ultrawide field imaging has allowed the visualization of approximately 82% of the total retinal area compared to only 30% using 7-standard field Early Treatment Diabetic Retinopathy (ETDRS) photography. This substantially wider fi...

Connectome-Based Propagation Model in Amyotrophic Lateral Sclerosis.

Annals of neurology
OBJECTIVE: Clinical trials in amyotrophic lateral sclerosis (ALS) continue to rely on survival or functional scales as endpoints, despite the emergence of quantitative biomarkers. Neuroimaging-based biomarkers in ALS have been shown to detect ALS-ass...

Machine Learning techniques in breast cancer prognosis prediction: A primary evaluation.

Cancer medicine
More than 750 000 women in Italy are surviving a diagnosis of breast cancer. A large body of literature tells us which characteristics impact the most on their prognosis. However, the prediction of each disease course and then the establishment of a ...