AIMC Topic: Disease Progression

Clear Filters Showing 41 to 50 of 783 articles

Cerebrospinal fluid inflammatory cytokines as prognostic indicators for cognitive decline across Alzheimer's disease spectrum.

Journal of Alzheimer's disease : JAD
BackgroundNeuroinflammation actively contributes to the pathophysiology of Alzheimer's disease (AD); however, the value of neuroinflammatory biomarkers for disease-staging or predicting disease progression remains unclear.ObjectiveTo investigate diag...

SMOTE-Enhanced Explainable Artificial Intelligence Model for Predicting Visual Field Progression in Myopic Normal Tension Glaucoma.

Journal of glaucoma
PRCIS: The AI model, enhanced by SMOTE to balance data classes, accurately predicted visual field deterioration in patients with myopic normal tension glaucoma. Using SHAP analysis, the key variables driving disease progression were identified.

In-silico investigation integrated with machine learning to identify potential inhibitors targeting AKT2: Key driver of cancer cell progression and metastasis.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: In search of a key driver for the invasive growth of cancer metastasis, AKT2 is found to be exceptionally expressed in colorectal cancer and its metastasis. Again, exceeding genomic arrangements of AKT2 can be held responsib...

Applications of machine learning approaches for pediatric asthma exacerbation management: a systematic review.

BMC medical informatics and decision making
BACKGROUND: Pediatric asthma is a common chronic respiratory disease worldwide, and its acute exacerbation events significantly impact children's health and quality of life. Machine learning, an advanced data analysis technique, has shown great poten...

Combined peritumoral radiomics and clinical features predict 12-month progression free survival in glioblastoma.

Journal of neuro-oncology
PURPOSE: Analyzing post-treatment MRIs from glioblastoma patients can be challenging due to similar radiological presentations of disease progression and treatment effects. Identifying radiomics features (RFs) revealing progressive glioblastoma can c...

Transcriptomic analyses of human brains with Alzheimer's disease identified dysregulated epilepsy-causing genes.

Epilepsy & behavior : E&B
BACKGROUND & OBJECTIVE: Alzheimer's Disease (AD) patients at multiple stages of disease progression have a high prevalence of seizures. However, whether AD and epilepsy share pathophysiological changes remains poorly defined. In this study, we levera...

Deep Visual Proteomics maps proteotoxicity in a genetic liver disease.

Nature
Protein misfolding diseases, including α1-antitrypsin deficiency (AATD), pose substantial health challenges, with their cellular progression still poorly understood. We use spatial proteomics by mass spectrometry and machine learning to map AATD in h...

Development and validation of multi-center serum creatinine-based models for noninvasive prediction of kidney fibrosis in chronic kidney disease.

Renal failure
OBJECTIVE: Kidney fibrosis is a key pathological feature in the progression of chronic kidney disease (CKD), traditionally diagnosed through invasive kidney biopsy. This study aimed to develop and validate a noninvasive, multi-center predictive model...

Machine learning-based integration reveals reliable biomarkers and potential mechanisms of NASH progression to fibrosis.

Scientific reports
Non-alcoholic fatty liver disease (NAFLD) affects about 25% of adults worldwide. Its advanced form, non-alcoholic steatohepatitis (NASH), is a major cause of liver fibrosis, but there are no non-invasive tests for diagnosing or preventing it. In our ...