AIMC Topic: Liver Cirrhosis

Clear Filters Showing 131 to 140 of 218 articles

Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality.

JAMA network open
IMPORTANCE: Machine-learning algorithms offer better predictive accuracy than traditional prognostic models but are too complex and opaque for clinical use.

An index based on deep learning-measured spleen volume on CT for the assessment of high-risk varix in B-viral compensated cirrhosis.

European radiology
OBJECTIVES: Deep learning enables an automated liver and spleen volume measurements on CT. The purpose of this study was to develop an index combining liver and spleen volumes and clinical factors for detecting high-risk varices in B-viral compensate...

Automated quantification and architectural pattern detection of hepatic fibrosis in NAFLD.

Annals of diagnostic pathology
Accurate detection and quantification of hepatic fibrosis remain essential for assessing the severity of non-alcoholic fatty liver disease (NAFLD) and its response to therapy in clinical practice and research studies. Our aim was to develop an integr...

Diagnostic accuracy of texture analysis and machine learning for quantification of liver fibrosis in MRI: correlation with MR elastography and histopathology.

European radiology
OBJECTIVES: To compare the diagnostic accuracy of texture analysis (TA)-derived parameters combined with machine learning (ML) of non-contrast-enhanced T1w and T2w fat-saturated (fs) images with MR elastography (MRE) for liver fibrosis quantification...

Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis.

European radiology
OBJECTIVES: To propose a transfer learning (TL) radiomics model that efficiently combines the information from gray scale and elastogram ultrasound images for accurate liver fibrosis grading.

Multiclass Classification of Hepatic Anomalies with Dielectric Properties: From Phantom Materials to Rat Hepatic Tissues.

Sensors (Basel, Switzerland)
Open-ended coaxial probes can be used as tissue characterization devices. However, the technique suffers from a high error rate. To improve this technology, there is a need to decrease the measurement error which is reported to be more than 30% for a...

Detecting liver fibrosis using a machine learning-based approach to the quantification of the heart-induced deformation in tagged MR images.

NMR in biomedicine
Liver disease causes millions of deaths per year worldwide, and approximately half of these cases are due to cirrhosis, which is an advanced stage of liver fibrosis that can be accompanied by liver failure and portal hypertension. Early detection of ...

Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: A proof of concept study.

Metabolism: clinical and experimental
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirr...